Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Péter Poór is active.

Publication


Featured researches published by Péter Poór.


Plant Science | 2013

Redox control of plant growth and development.

Gábor Kocsy; Irma Tari; Radomira Vankova; Bernd Zechmann; Zsolt Gulyás; Péter Poór; Gábor Galiba

Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated.


Plant Biology | 2011

Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress.

Péter Poór; Katalin Gémes; Ferenc Horváth; Ágnes Szepesi; Mária L. Simon; Irma Tari

Salicylic acid (SA) applied at 10(-3) m in hydroponic culture decreased stomatal conductance (g(s)), maximal CO(2) fixation rate (A(max) ) and initial slopes of the CO(2) (A/C(i)) and light response (A/PPFD) curves, carboxylation efficiency of Rubisco (CE) and photosynthetic quantum efficiency (Q), resulting in the death of tomato plants. However, plants could acclimate to lower concentrations of SA (10(-7) -10(-4) m) and, after 3 weeks, returned to control levels of g(s), photosynthetic performance and soluble sugar content. In response to high salinity (100 mm NaCl), the pre-treated plants exhibited higher A(max) as a function of internal CO(2) concentration (C(i) ) or photosynthetic photon flux density (PPFD), and higher CE and Q values than salt-treated controls, suggesting more effective photosynthesis after SA treatment. Growth in 10(-7) or 10(-4) m SA-containing solution led to accumulation of soluble sugars in both leaf and root tissues, which remained higher in both plant parts during salt stress at 10(-4) m SA. The activity of hexokinase (HXK) with glucose, but not fructose, as substrate was reduced by SA treatment in leaf and root samples, leading to accumulation of glucose and fructose in leaf tissues. HXK activity decreased further under high salinity in both plant organs. The accumulation of soluble sugars and sucrose in roots of plants growing in the presence of 10(-4) m SA contributed to osmotic adjustment and improved tolerance to subsequent salt stress. Apart from its putative role in delaying senescence, decreased HXK activity may divert hexoses from catabolic reactions to osmotic adaptation.


Physiologia Plantarum | 2011

Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity

Katalin Gémes; Péter Poór; Edit Horváth; Zsuzsanna Kolbert; Dóra Szopkó; Ágnes Szepesi; Irma Tari

Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.


Biologia Plantarum | 2010

Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress

Irma Tari; G. Kiss; A. K. Deér; Jolán Csiszár; László Erdei; Ágnes Gallé; Katalin Gémes; Ferenc Horváth; Péter Poór; Ágnes Szepesi; L. M. Simon

Increased aldose reductase (ALR) activities were detected in the leaf tissues of tomato plants grown for 3 weeks in culture medium containing 10−7 or 10−4 M salicylic acid (SA), and in the roots after the 10−4 M SA pretreatment. The ALR activity changed in parallel with the sorbitol content in the leaves of the SA-treated plants. Salt stress elicited by 100 mM NaCl enhanced the accumulation of sorbitol in the leaves of control plants and as compared with the untreated control the sorbitol content in the SA-pretreated leaves remained elevated under salt stress. DEAE cellulose anionexchange column purification of the protein precipitated with 80 % (NH4)2SO4 revealed two enzyme fractions with ALR activity in both the leaf and the root tissues. The fraction of the leaf extract that was not bound to the column reacted with glucose and glucose-6-P as substrates, whereas glucose was not a substrate for the bound fraction or for root isoenzymes. The root enzyme was less sensitive to salt treatment: 50 mM NaCl caused 30 % inhibition in the leaf extract, whereas the enzyme activity of the root extract was not affected. It is suggested that increased ALR activity and sorbitol synthesis in the leaves of SA-treated tomato plants may result in an improved salt stress tolerance.


Acta Biologica Hungarica | 2008

CHANGES IN CHLOROPHYLL FLUORESCENCE PARAMETERS AND OXIDATIVE STRESS RESPONSES OF BUSH BEAN GENOTYPES FOR SELECTING CONTRASTING ACCLIMATION STRATEGIES UNDER WATER STRESS

Irma Tari; D. Camen; Giancarla Coradini; Jolán Csiszár; Erika Fediuc; Katalin Gémes; A. Lazar; Emilian Madosa; Sorina Mihacea; Péter Poór; Simona Postelnicu; Mihaela Staicu; Ágnes Szepesi; G. Nedelea; László Erdei

Drought resistance of bean landraces was compared in order to select genotypes with either high morphological or high biochemical-physiological plasticity. The lines in the former group exhibited fast reduction in fresh and dry mass, decreased the water potential in primary leaves after irrigation withdrawal and the biomass mobilized from the senescent primary leaves was allocated into the roots. These genotypes had high frequency of primary leaf abscission under water stress. The genotypes with plasticity at the biochemical level maintained high water potential and photochemical efficiency, i.e. effective quantum yield, high photochemical (qP) and low non-photochemical (NPQ) quenching in primary leaves under drought stress. While superoxide dismutase activity was not influenced by the drought and the genotype, catalase activity increased significantly in the primary leaves of the genotypes with efficient biochemical adaptation. Lines with high morphological plasticity exhibited higher quaiacol peroxidase activity under drought. Proline may accumulate in both cases, thus it may be a symptom of protein degradation or a successful osmotic adaptation. On the basis of contrasting responses, the genetic material cannot be screened for a large-scale breeding program by a single physiological parameter but by a set of the methods presented in this work.


Functional Plant Biology | 2012

Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid

Péter Poór; Irma Tari

Salicylic acid (SA), a signalling molecule in plant-pathogen interactions induces stomatal closure in intact leaves and it has a direct control over stomatal movement by increasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in guard cells (GC). Stomatal closure on the abaxial epidermal peels of tomato leaves was induced at 10-7 and 10-3M SA but stomata remained open at 10-4M. At concentrations that reduced stomatal aperture, the ROS and NO levels were raised. The accumulation of ROS and NO could be prevented by specific scavengers, which were effective inhibitors of the SA-induced stomatal closure. In contrast with other plant species, the guard cells (GCs) of tomato did not show a long-lasting accumulation of ROS in the presence of 10-4M SA and their NO content decreased to below the control level, leading to stomatal opening. Increasing SA concentrations resulted in a significant decrease in the maximum and effective quantum yields of PSII photochemistry and in the photochemical quenching parameter of GCs. In the presence of 10-7 and 10-4M SA, the chloroplasts of GCs sustained a higher electron transport rate than in the presence of 10-3M, suggesting that the SA-induced inhibition of GC photosynthesis may affect stomatal closure at high SA concentrations.


PLOS ONE | 2014

Soil Drench Treatment with ß-Aminobutyric Acid Increases Drought Tolerance of Potato

Anita Sós-Hegedűs; Zsófia Juhász; Péter Poór; Mihály Kondrák; Ferenc Antal; Irma Tari; Brigitte Mauch-Mani; Zsófia Bánfalvi

The non-protein amino acid β-aminobutyric acid (BABA) is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species) production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks.


Plant Signaling & Behavior | 2011

Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive Never ripe tomato mutants

Irma Tari; Péter Poór; Katalin Gémes

The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv. Ailsa Craig). ROS were up-regulated, while NO remained at the control level in apical root tissues of wild-type plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10-3 M SA. This suggests that a functional ethylene signalling pathway is necessary for the control of ROS and NO production induced by SA.


Journal of Plant Physiology | 2017

Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato

Péter Poór; Zoltán Takács; Krisztina Bela; Zalán Czékus; Gabriella Szalai; Irma Tari

Salicylic acid (SA) is an important plant growth regulator playing a role in the hypersensitive reaction (HR) and the induction of systemic acquired resistance. Since the SA-mediated signalling pathways and the formation of reactive oxygen species (ROS) are light-dependent, the time- and concentration-specific induction of oxidative stress was investigated in leaves of tomato plants kept under light and dark conditions after treatments with 0.1mM and 1mM SA. The application of exogenous SA induced early superoxide- and H2O2 production in the leaves, which was different in the absence or presence of light and showed time- and concentration-dependent changes. 1mM SA, which induced HR-like cell death resulted in two peaks in the H2O2 production in the light but the first, priming peak was not detected in the dark. Unlike 0.1mM SA, 1mM SA application induced NADPH oxidase activity leading to increased superoxide production in the first hours of SA treatments in the light. Moreover, SA treatments inhibited catalase (CAT) activity and caused a transient decline in ascorbate peroxidase (APX), the two main enzymes responsible for H2O2 degradation, which led to a fast H2O2 burst in the light. Their activity as well as the expression of some isoenzymes of SOD and APX increased only from the 12th h in the illuminated samples. The activity of NADPH oxidase and expression SlRBOH1 gene encoding a NADPH oxidase subunit was much lower in the dark. In spite of low CAT and APX activity after SA treatments in the dark, the activation of guaiacol-dependent peroxidase (POD) could partially substitute H2O2 scavenging activity of these enzymes in the dark, which reduced the ROS burst and development of lesion formation in the leaves.


Acta Biologica Hungarica | 2014

Opposite extremes in ethylene/nitric oxide ratio induce cell death in suspension culture and root apices of tomato exposed to salt stress

Péter Poór; P. Borbély; Judit Kovács; Anita Papp; Ágnes Szepesi; Zoltán Takács; Irma Tari

The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.

Collaboration


Dive into the Péter Poór's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge