Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irwin Hollander is active.

Publication


Featured researches published by Irwin Hollander.


Journal of Medicinal Chemistry | 2010

Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5'-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor.

Aranapakam Mudumbai Venkatesan; Christoph Martin Dehnhardt; Efren Delos Santos; Zecheng Chen; Osvaldo Dos Santos; Semiramis Ayral-Kaloustian; Gulnaz Khafizova; Natasja Brooijmans; Robert Mallon; Irwin Hollander; Larry Feldberg; Judy Lucas; Ker Yu; James Joseph Gibbons; Robert T. Abraham; Inder Chaudhary; Tarek S. Mansour

The PI3K/Akt signaling pathway is a key pathway in cell proliferation, growth, survival, protein synthesis, and glucose metabolism. It has been recognized recently that inhibiting this pathway might provide a viable therapy for cancer. A series of bis(morpholino-1,3,5-triazine) derivatives were prepared and optimized to provide the highly efficacious PI3K/mTOR inhibitor 1-(4-{[4-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-3-[4-(4,6-dimorpholin-4-yl-1,3,5-triazin-2-yl)phenyl]urea 26 (PKI-587). Compound 26 has shown excellent activity in vitro and in vivo, with antitumor efficacy in both subcutaneous and orthotopic xenograft tumor models when administered intravenously. The structure-activity relationships and the in vitro and in vivo activity of analogues in this series are described.


Clinical Cancer Research | 2011

Antitumor Efficacy of PKI-587, a Highly Potent Dual PI3K/mTOR Kinase Inhibitor

Robert Mallon; Larry Feldberg; Judy Lucas; Inder Chaudhary; Christoph Martin Dehnhardt; Efren Delos Santos; Zecheng Chen; Osvaldo Dos Santos; Semiramis Ayral-Kaloustian; Aranapakam Mudumbai Venkatesan; Irwin Hollander

Purpose: The aim of this study was to show preclinical efficacy and clinical development potential of PKI-587, a dual phosphoinositide 3-kinase (PI3K)/mTOR inhibitor. Experimental Design: In vitro class 1 PI3K enzyme and human tumor cell growth inhibition assays and in vivo five tumor xenograft models were used to show efficacy. Results: In vitro, PKI-587 potently inhibited class I PI3Ks (IC50 vs. PI3K-α = 0.4 nmol/L), PI3K-α mutants, and mTOR. PKI-587 inhibited growth of 50 diverse human tumor cell lines at IC50 values of less than 100 nmol/L. PKI-587 suppressed phosphorylation of PI3K/mTOR effectors (e.g., Akt), and induced apoptosis in human tumor cell lines with elevated PI3K/mTOR signaling. MDA-MB-361 [breast; HER2+, PIK3CA mutant (E545K)] was particularly sensitive to this effect, with cleaved PARP, an apoptosis marker, induced by 30 nmol/L PKI-587 at 4 hours. In vivo, PKI-587 inhibited tumor growth in breast (MDA-MB-361, BT474), colon (HCT116), lung (H1975), and glioma (U87MG) xenograft models. In MDA-MB-361 tumors, PKI-587 (25 mg/kg, single dose i.v.) suppressed Akt phosphorylation [at threonine(T)308 and serine(S)473] for up to 36 hours, with cleaved PARP (cPARP) evident up to 18 hours. PKI-587 at 25 mg/kg (once weekly) shrank large (∼1,000 mm3) MDA-MB-361 tumors and suppressed tumor regrowth. Tumor regression correlated with suppression of phosphorylated Akt in the MDA-MB-361 model. PKI-587 also caused regression in other tumor models, and efficacy was enhanced when given in combination with PD0325901 (MEK 1/2 inhibitor), irinotecan (topoisomerase I inhibitor), or HKI-272 (neratinib, HER2 inhibitor). Conclusion: Significant antitumor efficacy and a favorable pharmacokinetic/safety profile justified phase 1 clinical evaluation of PKI-587. Clin Cancer Res; 17(10); 3193–203. ©2011 AACR.


Biochemical Pharmacology | 1999

Irreversible inhibition of epidermal growth factor receptor tyrosine kinase with in vivo activity by N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785).

Carolyn Discafani; Marion L. Carroll; M. Brawner Floyd; Irwin Hollander; Zaheed Husain; Bernard D. Johnson; Douglas Bruce Kitchen; Michael K. May; Madhu S. Malo; Albert A. Minnick; Ramaswamy Nilakantan; Ru Shen; Yu-Fen Wang; Allan Wissner; Lee M. Greenberger

It has been shown previously that 4-anilino quinazolines compete with the ability of ATP to bind the epidermal growth factor receptor (EGF-R), inhibit EGF-stimulated autophosphorylation of tyrosine residues in EGF-R, and block EGF-mediated growth. Since millimolar concentrations of ATP in cells could reduce the efficacy of 4-anilino quinazolines in cells and the activity of these compounds would not be sustained once they were removed from the body, we reasoned that irreversible inhibitors of EGF-R might improve the activity of this series of compounds in animals. Molecular modeling of the EGF-R kinase domain was used to design irreversible inhibitors. We herein describe one such inhibitor: N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]2-butynamide, known as CL-387,785. This compound covalently bound to EGF-R. It also specifically inhibited kinase activity of the protein (IC50 = 370+/-120 pM), blocked EGF-stimulated autophosphorylation of the receptor in cells (ic50 approximately 5 nM), inhibited cell proliferation (IC50 = 31-125 nM) primarily in a cytostatic manner in cell lines that overexpress EGF-R or c-erbB-2, and profoundly blocked the growth of a tumor that overexpresses EGF-R in nude mice (when given orally at 80 mg/kg/day for 10 days, daily). We conclude that CL-387,785 is useful for studying the interaction of small molecules with EGF-R and may have clinical utility.


Journal of Medicinal Chemistry | 2009

ATP-Competitive Inhibitors of the Mammalian Target of Rapamycin: Design and Synthesis of Highly Potent and Selective Pyrazolopyrimidines.

Arie Zask; Jeroen C. Verheijen; Kevin J. Curran; Joshua Kaplan; David J. Richard; Pawel Wojciech Nowak; David Malwitz; Natasja Brooijmans; Joel Bard; Kristine Svenson; Judy Lucas; Lourdes Toral-Barza; Weiguo Zhang; Irwin Hollander; James Joseph Gibbons; Robert T. Abraham; Semiramis Ayral-Kaloustian; Tarek S. Mansour; Ker Yu

The mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described. Structural features leading to potency and selectivity were identified and refined leading to compounds with in vivo efficacy in tumor xenograft models.


Journal of Medicinal Chemistry | 2009

Morpholine Derivatives Greatly Enhance the Selectivity of Mammalian Target of Rapamycin (mTOR) Inhibitors

Arie Zask; Joshua Kaplan; Jeroen C. Verheijen; David J. Richard; Kevin J. Curran; Natasja Brooijmans; Eric M. Bennett; Lourdes Toral-Barza; Irwin Hollander; Semiramis Ayral-Kaloustian; Ker Yu

Dramatic improvements in mTOR-targeting selectivity were achieved by replacing morpholine in pyrazolopyrimidine inhibitors with bridged morpholines. Analogues with subnanomolar mTOR IC(50) values and up to 26000-fold selectivity versus PI3Kalpha were prepared. Chiral morpholines gave inhibitors whose enantiomers had different selectivity and potency profiles. Molecular modeling suggests that a single amino acid difference between PI3K and mTOR (Phe961Leu) accounts for the profound selectivity seen by creating a deeper pocket in mTOR that can accommodate bridged morpholines.


Molecular Cancer Therapeutics | 2010

Antitumor Efficacy Profile of PKI-402, a Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor

Robert Mallon; Irwin Hollander; Larry Feldberg; Judy Lucas; Veronica Soloveva; Aranapakam Mudumbai Venkatesan; Christoph Martin Dehnhardt; Efren Delos Santos; Zecheng Chen; Osvaldo Dos Santos; Semiramis Ayral-Kaloustian; Jay Gibbons

PKI-402 is a selective, reversible, ATP-competitive, equipotent inhibitor of class I phosphatidylinositol 3-kinases (PI3K), including PI3K-α mutants, and mammalian target of rapamycin (mTOR; IC50 versus PI3K-α = 2 nmol/L). PKI-402 inhibited growth of human tumor cell lines derived from breast, brain (glioma), pancreas, and non–small cell lung cancer tissue and suppressed phosphorylation of PI3K and mTOR effector proteins (e.g., Akt at T308) at concentrations that matched those that inhibited cell growth. In MDA-MB-361 [breast: Her2+ and PIK3CA mutant (E545K)], 30 nmol/L PKI-402 induced cleaved poly(ADP-ribose) polymerase (PARP), a marker for apoptosis. In vivo, PKI-402 inhibited tumor growth in MDA-MB-361, glioma (U87MG), and lung (A549) xenograft models. In MDA-MB-361, PKI-402 at 100 mg/kg (daily for 5 days, one round) reduced initial tumor volume of 260 mm3 to 129 mm3 and prevented tumor regrowth for 70 days. In MDA-MB-361 tumors, PKI-402 (100 mg/kg, single dose) suppressed Akt phosphorylation (at T308) and induced cleaved PARP. Suppression of phosphorylated Akt (p-Akt) was complete at 8 hours and still evident at 24 hours. Cleaved PARP was evident at 8 and 24 hours. In normal tissue (heart and lung), PKI-402 (100 mg/kg) had minimal effect on p-Akt, with no detectable cleaved PARP. Preferential accumulation of PKI-402 in tumor tissue was observed. Complete, sustained suppression of Akt phosphorylation may cause tumor regression in MDA-MB-361 and other xenograft models. We are testing whether dual PI3K/mTOR inhibitors can durably suppress p-Akt, induce cleaved PARP, and cause tumor regression in a diverse set of human tumor xenograft models. Mol Cancer Ther; 9(4); 976–84. ©2010 AACR.


Journal of Medicinal Chemistry | 2010

Lead Optimization of N-3-Substituted 7-Morpholinotriazolopyrimidines as Dual Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitors: Discovery of PKI-402

Christoph Martin Dehnhardt; Aranapakam Mudumbai Venkatesan; Efren Delos Santos; Zecheng Chen; Osvaldo Dos Santos; Semiramis Ayral-Kaloustian; Natasja Brooijmans; Robert Mallon; Irwin Hollander; Larry Feldberg; Judy Lucas; Inder Chaudhary; Ker Yu; Jay Gibbons; Robert T. Abraham; Tarek S. Mansour

Herein we describe the identification and lead optimization of triazolopyrimidines as a novel class of potent dual PI3K/mTOR inhibitors, resulting in the discovery of 3 (PKI-402). Compound 3 exhibits good physical properties and PK parameters, low nanomolar potency against PI3Kalpha and mTOR, and excellent inhibition of cell proliferation in several human cancer cell lines. Furthermore, in vitro and in vivo biomarker studies demonstrated the ability of 3 to shut down the PI3K/Akt pathway and induce apoptosis in cancer cells. In addition, 3 showed excellent in vivo efficacy in various human cancer xenografts, validating suppression of PI3K/mTOR signaling as a potential anticancer therapy.


Bioorganic & Medicinal Chemistry Letters | 2010

Pyrazolopyrimidines as highly potent and selective, ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): optimization of the 1-substituent.

Kevin J. Curran; Jeroen C. Verheijen; Joshua Kaplan; David J. Richard; Lourdes Toral-Barza; Irwin Hollander; Judy Lucas; Semiramis Ayral-Kaloustian; Ker Yu; Arie Zask

A series of pyrazolopyrimidine mammalian Target Of Rapamycin (mTOR) inhibitors with various substituents at the 1-position have been prepared, resulting in compounds with excellent potency, selectivity and microsomal stability. Combination of a 1-cyclohexyl ketal group with a 2,6-ethylene bridged morpholine in the 4-position and a ureidophenyl group in the 6-positon resulted in compound 8a, that selectively suppressed key mTOR biomarkers in vivo for at least 8h following iv administration and showed excellent oral activity in a xenograft tumor model.


Bioorganic & Medicinal Chemistry Letters | 2009

Incorporation of water-solubilizing groups in pyrazolopyrimidine mTOR inhibitors: Discovery of highly potent and selective analogs with improved human microsomal stability

David J. Richard; Jeroen C. Verheijen; Kevin J. Curran; Joshua Kaplan; Lourdes Toral-Barza; Irwin Hollander; Judy Lucas; Ker Yu; Arie Zask

A series of highly potent and selective pyrazolopyrimidine mTOR inhibitors which contain water-solubilizing groups attached to the 6-arylureidophenyl moiety have been prepared. Such derivatives displayed superior potency to those in which these appendages were attached to alternative sites. In comparison to unfunctionalized arylureido compounds, these analogs demonstrated enhanced cellular potency and significantly improved stability towards human microsomes, resulting in an mTOR inhibitor with impressive efficacy in a xenograft model with an intermittent dosing regimen.


Journal of Medicinal Chemistry | 2010

Synthesis and SAR of Novel 4-Morpholinopyrrolopyrimidine Derivatives as Potent Phosphatidylinositol 3-Kinase Inhibitors

Zecheng Chen; Aranapakam Mudumbai Venkatesan; Christoph Martin Dehnhardt; Semiramis Ayral-Kaloustian; Natasja Brooijmans; Robert Mallon; Larry Feldberg; Irwin Hollander; Judy Lucas; Ker Yu; Fangming Kong; Tarek S. Mansour

Significant evidence suggests that deregulation of the PI3K/Akt pathway is important in tumor progression. Mechanisms include loss of function of the tumor suppressor PTEN and high frequency of mutation of the PI3K p110alpha isoform in human malignancies. This connection between PI3K and tumor genesis makes PI3K a promising target for cancer treatment. A series of 4-morpholinopyrrolopyrimidine derivatives were synthesized and evaluated as inhibitors of PI3Kalpha and mTOR, leading to the discovery of PI3Kalpha selective inhibitors (e.g., 9) and dual PI3Kalpha/mTOR kinase inhibitors (e.g., 46 and 48). PI3Kalpha/mTOR dual inhibitors demonstrated inhibition of tumor cell growth in vitro and in vivo and caused suppression of the pathway specific biomarkers [e.g., the phosphorylation of Akt at Thr308 (T308) and Ser473 (S473)] in the human breast cancer cell line MDA361. In addition, compound 46 demonstrated good in vivo efficacy in the MDA361 human breast tumor xenograft model.

Collaboration


Dive into the Irwin Hollander's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge