Ker Yu
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ker Yu.
Cancer Research | 2009
Ker Yu; Lourdes Toral-Barza; Celine Shi; Weiguo Zhang; Judy Lucas; Boris Shor; Jamie Kim; Jeroen C. Verheijen; Kevin J. Curran; David Malwitz; Derek Cecil Cole; John W. Ellingboe; Semiramis Ayral-Kaloustian; Tarek S. Mansour; James Joseph Gibbons; Robert T. Abraham; Pawel Wojciech Nowak; Arie Zask
The mammalian target of rapamycin (mTOR) is centrally involved in cell growth, metabolism, and angiogenesis. While showing clinical efficacy in a subset of tumors, rapamycin and rapalogs are specific and allosteric inhibitors of mTOR complex 1 (mTORC1), but they do not directly inhibit mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report chemical structure and biological characterization of three pyrazolopyrimidine ATP-competitive mTOR inhibitors, WAY-600, WYE-687, and WYE-354 (IC(50), 5-9 nmol/L), with significant selectivity over phosphatidylinositol 3-kinase (PI3K) isofoms (>100-fold). Unlike the rapalogs, these inhibitors acutely blocked substrate phosphorylation by mTORC1 and mTORC2 in vitro and in cells in response to growth factor, amino acids, and hyperactive PI3K/AKT. Unlike the inhibitors of PI3K or dual-pan PI3K/mTOR, cellular inhibition of P-S6K1(T389) and P-AKT(S473) by the pyrazolopyrimidines occurred at significantly lower inhibitor concentrations than those of P-AKT(T308) (PI3K-PDK1 readout), showing mTOR selectivity in cellular setting. mTOR kinase inhibitors reduced AKT downstream function and inhibited proliferation of diverse cancer cell lines. These effects correlated with a strong G(1) cell cycle arrest in both the rapamycin-sensitive and rapamycin-resistant cells, selective induction of apoptosis, repression of global protein synthesis, and down-regulation of angiogenic factors. When injected into tumor-bearing mice, WYE-354 inhibited mTORC1 and mTORC2 and displayed robust antitumor activity in PTEN-null tumors. Together, our results highlight mechanistic differentiation between rapalogs and mTOR kinase inhibitors in targeting cancer cell growth and survival and provide support for clinical development of mTOR kinase inhibitors as new cancer therapy.
Science Signaling | 2010
Christina H. Eng; Ker Yu; Judy Lucas; Eileen White; Robert T. Abraham
A volatile metabolic by-product can promote cell survival through the induction of autophagy. From Metabolism to Autophagy Autophagy is a catabolic process in which macromolecules and organelles are degraded to reclaim nutrients during starvation or to eliminate damaged, potentially toxic cellular components. Dysregulation of autophagy has been implicated in the pathogenesis of various diseases, including cancer and Parkinson’s disease. Noting that culture medium conditioned by actively proliferating cells increased autophagy in secondary cell cultures, Eng et al. identified ammonia, a volatile by-product of a metabolic process known as glutaminolysis, as a diffusible stimulator of autophagy. Glutaminolysis can be higher in tumor cells than in normal cells, and in mice implanted with tumor xenografts derived from human cancer cell lines, ammonia concentrations in tumor-associated fluids were higher than those found in the general circulation of the murine host and were similar to those required for autophagy stimulation. Moreover, ammonia-induced autophagy protected cells from cell death triggered by exposure to tumor necrosis factor–α. Together, these results suggest that treatments that alter intracellular glutamine concentrations or target glutamine metabolism may be possible strategies in cancer therapy. Autophagy is a tightly regulated catabolic process that plays key roles in normal cellular homeostasis and survival during periods of extracellular nutrient limitation and stress. The environmental signals that regulate autophagic activity are only partially understood. Here, we report a direct link between glutamine (Gln) metabolism and autophagic activity in both transformed and nontransformed human cells. Cells cultured for more than 2 days in Gln-containing medium showed increases in autophagy that were not attributable to nutrient depletion or to inhibition of mammalian target of rapamycin. Conditioned medium from these cells contained a volatile factor that triggered autophagy in secondary cell cultures. We identified this factor as ammonia derived from the deamination of Gln by glutaminolysis. Gln-dependent ammonia production supported basal autophagy and protected cells from tumor necrosis factor–α (TNF-α)–induced cell death. Thus, Gln metabolism not only fuels cell growth but also generates an autocrine- and paracrine-acting regulator of autophagic flux in proliferating cells.
Cancer Research | 2010
Ker Yu; Celine Shi; Lourdes Toral-Barza; Judy Lucas; Boris Shor; Jae Eun Kim; Weiguo Zhang; Robert Mahoney; Christine Gaydos; LuAnna Tardio; Sung Kyoo Kim; Roger Conant; Kevin J. Curran; Joshua Kaplan; Jeroen C. Verheijen; Semiramis Ayral-Kaloustian; Tarek S. Mansour; Robert T. Abraham; Arie Zask; James Joseph Gibbons
The mammalian target of rapamycin (mTOR) is a major component of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway that is dysregulated in 50% of all human malignancies. Rapamycin and its analogues (rapalogs) partially inhibit mTOR through allosteric binding to mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report WYE-125132 (WYE-132), a highly potent, ATP-competitive, and specific mTOR kinase inhibitor (IC(50): 0.19 +/- 0.07 nmol/L; >5,000-fold selective versus PI3Ks). WYE-132 inhibited mTORC1 and mTORC2 in diverse cancer models in vitro and in vivo. Importantly, consistent with genetic ablation of mTORC2, WYE-132 targeted P-AKT(S473) and AKT function without significantly reducing the steady-state level of the PI3K/PDK1 activity biomarker P-AKT(T308), highlighting a prominent and direct regulation of AKT by mTORC2 in cancer cells. Compared with the rapalog temsirolimus/CCI-779, WYE-132 elicited a substantially stronger inhibition of cancer cell growth and survival, protein synthesis, cell size, bioenergetic metabolism, and adaptation to hypoxia. Oral administration of WYE-132 to tumor-bearing mice showed potent single-agent antitumor activity against MDA361 breast, U87MG glioma, A549 and H1975 lung, as well as A498 and 786-O renal tumors. An optimal dose of WYE-132 achieved a substantial regression of MDA361 and A549 large tumors and caused complete regression of A498 large tumors when coadministered with bevacizumab. Our results further validate mTOR as a critical driver for tumor growth, establish WYE-132 as a potent and profound anticancer agent, and provide a strong rationale for clinical development of specific mTOR kinase inhibitors as new cancer therapy.
Seminars in Oncology | 2009
James J. Gibbons; Robert T. Abraham; Ker Yu
Since the discovery of rapamycin, considerable progress has been made in unraveling the details of the mammalian target of rapamycin (mTOR) signaling network, including the upstream mechanisms that modulate mTOR signaling functions, and the roles of mTOR in the regulation of mRNA translation and other cell growth-related responses. mTOR is found in two different complexes within the cell, mTORC1 and mTORC2, but only mTORC1 is sensitive to inhibition by rapamycin. mTORC1 is a master controller of protein synthesis, integrating signals from growth factors within the context of the energy and nutritional conditions of the cell. Activated mTORC1 regulates protein synthesis by directly phosphorylating 4E-binding protein 1 (4E-BP1) and p70S6K (S6K), translation initiation factors that are important to cap-dependent mRNA translation, which increases the level of many proteins that are needed for cell cycle progression, proliferation, angiogenesis, and survival pathways. In normal physiology, the roles of mTOR in both glucose and lipid catabolism underscore the importance of the mTOR pathway in the production of metabolic energy in quantities sufficient to fuel cell growth and mitotic cell division. Several oncogenes and tumor-suppressor genes that activate mTORC1, often through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, are frequently dysregulated in cancer. Novel analogs of rapamycin (temsirolimus, everolimus, and deforolimus), which have improved pharmaceutical properties, were designed for oncology indications. Clinical trials of these analogs have already validated the importance of mTOR inhibition as a novel treatment strategy for several malignancies. Inhibition of mTOR now represents an attractive anti-tumor target, either alone or in combination with strategies to target other pathways that may overcome resistance. The far-reaching downstream consequences of mTOR inhibition make defining the critical molecular effector mechanisms that mediate the anti-tumor response and associated biomarkers that predict responsiveness to mTOR inhibitors a challenge and priority for the field.
Cell Cycle | 2009
Boris Shor; James Joseph Gibbons; Robert T. Abraham; Ker Yu
The mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for drug development. Until recently, we have relied largely on the use of rapamycin to study mTOR function and its anticancer potential. Recent insights now indicate that rapamycin is a partial inhibitor of mTOR through allosteric inhibition of mTOR complex-1 (mTORC1) but not mTOR complex-2 (mTORC2). Both the mechanism of action and the cellular response to mTORC1 inhibition by rapamycin and related drugs may limit the effectiveness of these compounds as antitumor agents. We and others have recently reported the discovery of second-generation ATP-competitive mTOR kinase inhibitors (TKIs) that bind to the active sites of mTORC1 and mTORC2, thereby targeting mTOR signaling function globally (see refs. 1-4). The discovery of specific, active-site mTOR inhibitors has opened a new chapter in the 40-plus year old odyssey that began with the discovery of rapamycin from a soil sample collected on Easter Island (see Vézina C, et al. J Antibiot 1975). Here, we discuss recent studies that highlight the emergence of rapamycin-resistant mTOR function in protein synthesis, cell growth, survival and metabolism. It is shown that these rapamycin-resistant mTOR functions are profoundly inhibited by TKIs. A more complete suppression of mTOR global signaling network by the new inhibitors is expected to yield a deeper and broader antitumor response in the clinic.
Journal of Medicinal Chemistry | 2010
Aranapakam Mudumbai Venkatesan; Christoph Martin Dehnhardt; Efren Delos Santos; Zecheng Chen; Osvaldo Dos Santos; Semiramis Ayral-Kaloustian; Gulnaz Khafizova; Natasja Brooijmans; Robert Mallon; Irwin Hollander; Larry Feldberg; Judy Lucas; Ker Yu; James Joseph Gibbons; Robert T. Abraham; Inder Chaudhary; Tarek S. Mansour
The PI3K/Akt signaling pathway is a key pathway in cell proliferation, growth, survival, protein synthesis, and glucose metabolism. It has been recognized recently that inhibiting this pathway might provide a viable therapy for cancer. A series of bis(morpholino-1,3,5-triazine) derivatives were prepared and optimized to provide the highly efficacious PI3K/mTOR inhibitor 1-(4-{[4-(dimethylamino)piperidin-1-yl]carbonyl}phenyl)-3-[4-(4,6-dimorpholin-4-yl-1,3,5-triazin-2-yl)phenyl]urea 26 (PKI-587). Compound 26 has shown excellent activity in vitro and in vivo, with antitumor efficacy in both subcutaneous and orthotopic xenograft tumor models when administered intravenously. The structure-activity relationships and the in vitro and in vivo activity of analogues in this series are described.
Journal of Biological Chemistry | 2010
Boris Shor; Jiang Wu; Quazi Shakey; Lourdes Toral-Barza; Celine Shi; Max Follettie; Ker Yu
The mammalian target of rapamycin (mTOR) regulates growth via promoting translation and transcription. Here, employing an mTOR active-site inhibitor WYE-125132 (WYE-132), we have performed quantitative phospho-proteomics and identified a Ser-75-containing phosphopeptide from Maf1, a known repressor of RNA polymerase III (Pol III) transcription. Treatment of cancer cells with WYE-132 or the rapamycin analog CCI-779 led to a rapid loss of the phosphorylation at Ser-75, whereas this effect was not seen in cells treated with cytotoxic agents or unrelated inhibitors. WYE-132-induced Maf1 dephosphorylation correlated with its accumulation in the nucleus and a marked decline in the cellular levels of pre-tRNAs. Depletion of cellular Maf1 via small interfering RNA increased basal pre-tRNA and rendered tRNA synthesis refractory to mTOR inhibitors. Maf1 mutant proteins carrying S75A alone or with S60A, T64A, and S68A (Maf1-S75A, Maf1–4A) progressively enhanced basal repression of tRNA in actively proliferating cells and attenuated amino acid-induced tRNA transcription. Gene alignment revealed conservation of all four Ser/Thr sites in high eukaryotes, further supporting a critical role of these residues in Maf1 function. Interestingly, mTOR inhibition led to an increase in the occupancy of Maf1 on a set of Pol III-dependent genes, with concomitant reduction in the binding of Pol III and Brf1. Unexpectedly, mTORC1 itself was also enriched at the same set of Pol III templates, but this association was not influenced by mTOR inhibitor treatment. Our results highlight a new and unique mode of regulation of Pol III transcription by mTOR and suggest that normalization of Pol III activity may contribute to the therapeutic efficacy of mTOR inhibitors.
Cancer Biology & Therapy | 2008
Ker Yu; Lourdes Toral-Barza; Celine Shi; Weiguo Zhang; Arie Zask
While small molecule inhibitors of the phosphatidylinositide-3-kinase (PI3K) are expected to impact the development of new cancer therapy, the tumor types and underlying cellular pathways determining inhibitor response remain poorly defined. In this report, we have studied anti-proliferative effects of the PI3K inhibitors WAY-266176 and WAY-266175 in a panel of histologically diverse cancer cells. Inactivation of PI3K caused potent growth suppression in some cells (MDA468, BT549, MDA361, MCF7, LNCap, PC3MM2) but minimal suppression in others (MDA231, MDA435, DU145, HCT116, A549), which correlated with a differential down-regulation of cyclin D1, c-Myc, and induction of apoptosis. A heightened PI3K/AKT/mTOR signaling was linked to the sensitive phenotype but did not generally predict inhibitor response. Interestingly, the resistant cells all displayed an elevated phospho-ERK that remained elevated after serum deprivation. In HCT116 cells, activation mutations in the PI3K catalytic subunit PIK3CA and Ki-Ras correlated with a resistant phenotype, which was partially sensitized by homologous replacement with the wild-type Ki-Ras but not by deletion of cellular PTEN. Depletion of Mek1 via siRNA in resistant cells enhanced PI3K inhibitor-induced growth suppression. Moreover, a profoundly augmented growth suppression and apoptosis were achieved in resistant cells by combination treatment with WAY-266176/WAY-266175 and Mek1 kinase inhibitor CI-1040 or UO126. The combination therapy efficiently inhibited mitogenic signaling and reduced expression of cyclin D1 and c-Myc. Our results identify deregulation of the Ras/Raf/Mek/ERK pathway as a dominant determinant in cancer cell resistance to PI3K inhibitors and highlight combined targeting of PI3K and Mek1 as an effective anticancer strategy.
Journal of Medicinal Chemistry | 2009
Arie Zask; Jeroen C. Verheijen; Kevin J. Curran; Joshua Kaplan; David J. Richard; Pawel Wojciech Nowak; David Malwitz; Natasja Brooijmans; Joel Bard; Kristine Svenson; Judy Lucas; Lourdes Toral-Barza; Weiguo Zhang; Irwin Hollander; James Joseph Gibbons; Robert T. Abraham; Semiramis Ayral-Kaloustian; Tarek S. Mansour; Ker Yu
The mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described. Structural features leading to potency and selectivity were identified and refined leading to compounds with in vivo efficacy in tumor xenograft models.
Journal of Medicinal Chemistry | 2009
Arie Zask; Joshua Kaplan; Jeroen C. Verheijen; David J. Richard; Kevin J. Curran; Natasja Brooijmans; Eric M. Bennett; Lourdes Toral-Barza; Irwin Hollander; Semiramis Ayral-Kaloustian; Ker Yu
Dramatic improvements in mTOR-targeting selectivity were achieved by replacing morpholine in pyrazolopyrimidine inhibitors with bridged morpholines. Analogues with subnanomolar mTOR IC(50) values and up to 26000-fold selectivity versus PI3Kalpha were prepared. Chiral morpholines gave inhibitors whose enantiomers had different selectivity and potency profiles. Molecular modeling suggests that a single amino acid difference between PI3K and mTOR (Phe961Leu) accounts for the profound selectivity seen by creating a deeper pocket in mTOR that can accommodate bridged morpholines.