Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irwin K. Cheah is active.

Publication


Featured researches published by Irwin K. Cheah.


Biochimica et Biophysica Acta | 2012

Ergothioneine; antioxidant potential, physiological function and role in disease.

Irwin K. Cheah; Barry Halliwell

Since its discovery, the unique properties of the naturally occurring amino acid, L-ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine), have intrigued researchers for more than a century. This widely distributed thione is only known to be synthesized by non-yeast fungi, mycobacteria and cyanobacteria but accumulates in higher organisms at up to millimolar levels via an organic cation transporter (OCTN1). The physiological role of EGT has yet to be established. Numerous in vitro assays have demonstrated the antioxidant and cytoprotective capabilities of EGT against a wide range of cellular stressors, but an antioxidant role has yet to be fully verified in vivo. Nevertheless the accumulation, tissue distribution and scavenging properties, all highlight the potential for EGT to function as a physiological antioxidant. This article reviews our current state of knowledge. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Biotechnology Advances | 2013

Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing

Jan Gruber; Sheng Fong; Ce-Belle Chen; Sialee Yoong; Giorgia Pastorin; Sebastian Schaffer; Irwin K. Cheah; Barry Halliwell

Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology.


Biogerontology | 2010

Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans?

Pamela Boon Li Pun; Jan Gruber; Soon Yew Tang; Sebastian Schaffer; Raphael Lee Sheng Ong; Sheng Fong; Li Fang Ng; Irwin K. Cheah; Barry Halliwell

Antioxidants are often investigated as a promising strategy for extending lifespan. Accordingly, there is significant interest in novel antioxidant compounds derived from natural sources such as plant extracts. However, because lifespan studies are laborious and expensive to conduct, candidate compounds are frequently selected based simply on their in vitro antioxidant efficacy, with the implicit assumption that in vitro antioxidants are also in vivo antioxidants, and that in vivo antioxidants will decrease functionally relevant oxidative damage and thereby extend lifespan. We investigated the validity of these assumptions in the model organism, Caenorhabditiselegans. Nematodes were exposed to 6 plant extracts, selected out of a total of 34 based on a simple in vitro antioxidant assay. We found no correlation between in vitro and in vivo antioxidant capacities. Antioxidant efficacies were also not predictive of lifespan benefits. Further studies into those extracts that produced significant lifespan extension indicated that a direct antioxidant effect is unlikely to be the main factor responsible for the modulation of nematode lifespan.


Free Radical Biology and Medicine | 2014

The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease.

Li Fang Ng; Jan Gruber; Irwin K. Cheah; Chong Kit Goo; Wei Fun Cheong; Guanghou Shui; Kim Ping Sit; Markus R. Wenk; Barry Halliwell

β-Amyloid (Aβ)-induced toxicity and oxidative stress have been postulated to play critical roles in the pathogenic mechanism of Alzheimer disease (AD). We investigated the in vivo ability of a mitochondria-targeted antioxidant, MitoQ, to protect against Aβ-induced toxicity and oxidative stress in a Caenorhabditis elegans model overexpressing human Aβ. Impairment of electron transport chain (ETC) enzymatic activity and mitochondrial dysfunction are early features of AD. We show that MitoQ extends lifespan, delays Aβ-induced paralysis, ameliorates depletion of the mitochondrial lipid cardiolipin, and protects complexes IV and I of the ETC. Despite its protective effects on lifespan, healthspan, and ETC function, we find that MitoQ does not reduce DCFDA fluorescence, protein carbonyl levels or modulate steadystate ATP levels or oxygen consumption rate. Moreover, MitoQ does not attenuate mitochondrial DNA (mtDNA) oxidative damage. In agreement with its design, the protective effects of MitoQ appear to be targeted specifically to the mitochondrial membrane and our findings suggest that MitoQ may have therapeutic potential for Aβ- and oxidative stress-associated neurodegenerative disorders, particularly AD.


Biochemical and Biophysical Research Communications | 2016

Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis.

Barry Halliwell; Irwin K. Cheah; Chester L. Drum

Ergothioneine (ET) is a diet-derived, thiolated derivative of histidine with antioxidant properties. Although ET is produced only by certain fungi and bacteria, it can be found at high concentrations in certain human and animal tissues and is absorbed through a specific, high affinity transporter (OCTN1). In liver, heart, joint and intestinal injury, elevated ET concentrations have been observed in injured tissues. The physiological role of ET remains unclear. We thus review current literature to generate a specific hypothesis: that the accumulation of ET in vivo is an adaptive mechanism, involving the regulated uptake and concentration of an exogenous natural compound to minimize oxidative damage.


Free Radical Research | 2013

Knockout of a putative ergothioneine transporter in Caenorhabditis elegans decreases lifespan and increases susceptibility to oxidative damage

Irwin K. Cheah; R. L. S. Ong; Jan Gruber; T. S. K. Yew; Li Fang Ng; Ce-Belle Chen; Barry Halliwell

Abstract In addition to excretion of metabolic waste products, organic ionic transporters facilitate uptake of specific compounds of physiological importance. In animals, the organic cation transporter, OCTN1 was found to enable the specific uptake of the unique amino acid, ergothioneine (EGT). EGT can accumulate in the body at up to millimolar concentrations and is believed to function as a physiological antioxidant. However the main function of EGT and the reasons for its active accumulation in the body remain obscure. Through bioinformatic approaches, we identified an analogous EGT transporter in the nematode, Caenorhabditis elegans. The present study investigated and characterized deletion mutants of this gene, OCT-1, in the nematodes. Gene deletion mutations of the OCT-1 transporter were shown to decrease overall lifespan of the worms and increase oxidative damage. However the absence of impaired EGT uptake and the inability of excess EGT to rescue the debilitating phenotype indicate that EGT transport does not explain the deleterious effects of the gene deletion.


Free Radical Research | 2013

A high-fat and cholesterol diet causes fatty liver in guinea pigs. The role of iron and oxidative damage

Peng Ye; Irwin K. Cheah; Barry Halliwell

Abstract Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease. Iron, cholesterol, and oxidative damage are frequently suggested to be related to the progression of NAFLD, but the precise relationship between them remains unclear. Guinea pigs fed on a high cholesterol and fat diet (without oxidized lipids) generated a disease model of NAFLD with hallmark observations in liver histology and increased liver damage markers. Hepatic cholesterol and iron levels were found to be significantly elevated and directly correlated. Plasma hepcidin and transferrin levels were decreased. Plasma iron concentrations were found to be elevated, likely due to an increased intestinal iron absorption caused by the decrease in plasma hepcidin. However, hepatic transferrin receptor-2 levels were unchanged. No significant increase in hepatic lipid peroxidation was detected using F2-isoprostanes as a reliable biomarker, nor was there a rise in protein carbonyls, a general index of oxidative protein damage. Some increases in cholesterol oxidation products were observed, but largely negated after normalizing for the elevated hepatic cholesterol content. Indeed, increased hemosiderin deposition and unchanged ferritin levels in liver suggested that the excess iron mainly existed as hemosiderin, which is redox-inactive.


Free Radical Research | 2016

Liver ergothioneine accumulation in a guinea pig model of non-alcoholic fatty liver disease. A possible mechanism of defence?

Irwin K. Cheah; Richard Ming Yi Tang; Peng Ye; Terry S. Z. Yew; Keith Lim; Barry Halliwell

ABSTRACT L-ergothioneine (ET), a putative antioxidant compound acquired by animals through dietary sources, has been suggested to accumulate in certain cells and tissues in the body that are predisposed to high oxidative stress. In the present study, we identified an elevation of ET in the liver of a guinea pig model of non-alcoholic fatty liver disease (NAFLD), elucidated a possible mechanism for the increased uptake and investigated the possible role for this accumulation. This increase in liver ET levels correlated with cholesterol accumulation and disease severity. We identified an increase in the transcriptional factor, RUNX1, which has been shown to upregulate the expression of the ET-specific transporter OCTN1, and could consequently lead to the observable elevation in ET. An increase was also seen in heat shock protein 70 (HSP70) which seemingly corresponds to ET elevation. No significant increase was observed in oxidative damage markers, F2-isoprostanes, and protein carbonyls, which could possibly be attributed to the increase in liver ET through direct antioxidant action, induction of HSP70, or by chelation of Fe2+, preventing redox chemistry. The data suggest a novel mechanism by which the guinea pig fatty liver accumulates ET via upregulation of its transporter, as a possible stress response by the damaged liver to further suppress oxidative damage and delay tissue injury. Similar events may happen in other animal models of disease, and researchers should be aware of the possibility.


Biochemical and Biophysical Research Communications | 2016

Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration?

Irwin K. Cheah; Lei Feng; Richard Ming Yi Tang; Keith Lim; Barry Halliwell

Ergothioneine (ET), a naturally occurring thione, can accumulate in the human body at high concentrations from diet. Following absorption via a specific transporter, OCTN1, ET may accumulate preferentially in tissues predisposed to higher levels of oxidative stress and inflammation. Given its potential cytoprotective effects, we examined how ET levels change with age. We found that whole blood ET levels in elderly individuals decline significantly beyond 60 years of age. Additionally, a subset of these subjects with mild cognitive impairment had significantly lower plasma ET levels compared with age-matched subjects. This decline suggests that deficiency in ET may be a risk factor, predisposing individuals to neurodegenerative diseases.


Chemical Research in Toxicology | 2009

Notopterygium forbesii Boiss Extract and Its Active Constituent Phenethyl Ferulate Attenuate Pro-Inflammatory Responses to Lipopolysaccharide in RAW 264.7 Macrophages. A “Protective” Role for Oxidative Stress?

Soon Yew Tang; Irwin K. Cheah; Huansong Wang; Barry Halliwell

Oxidative stress and oxidative modification of biomolecules are involved in several physiological and pathophysiological processes. We have previously reported that Notopterygium forbesii Boiss (NF), a traditional Chinese medicine, and its active constituents, including phenethyl ferulate (PF), bergaptol, and isoimperatorin, induced oxidative stress with increased levels of reactive species and heme oxygenase-1 in human fetal hepatocytes. The current study determined the effects of NF and PF on the inflammatory effects of lipopolysaccharide (LPS). Exposure of RAW 264.7 macrophages to LPS increased the expression of inducible nitric oxide synthase and cyclooxygenase 2 and stimulated the formation of reactive nitrogen species. In a coculture system, the LPS-activated macrophages also induced expression of cell adhesion molecules (including E-selectin, intercellular cell adhesion molecule 1, and vascular cell adhesion molecule 1) in human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells (VSMC). Preincubation of macrophages with NF or PF attenuated the effects of LPS on macrophages as well as their effects on HUVEC and VSMC. These inhibitory effects of NF and PF were decreased in the presence of N-acetyl-l-cysteine (NAC). At the same time, NAC also reduced NF- or PF-induced increases in reactive oxygen species (ROS) and Hsp32 protein levels and the formation of protein carbonyls in the macrophages. These results suggest that NF- or PF-induced ROS generation and oxidative modifications of intracellular proteins may be responsible for the inhibitory actions of NF and PF on LPS-induced inflammatory responses. These data add to the growing literature that ROS may sometimes be anti-inflammatory.

Collaboration


Dive into the Irwin K. Cheah's collaboration.

Top Co-Authors

Avatar

Barry Halliwell

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Lei Feng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ee Heok Kua

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Rathi Mahendran

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Richard Ming Yi Tang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Gan Goh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Peng Ye

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge