Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrod Chapman is active.

Publication


Featured researches published by Jarrod Chapman.


Nature | 2009

The Sorghum bicolor genome and the diversification of grasses

Andrew H. Paterson; John E. Bowers; Rémy Bruggmann; Inna Dubchak; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Uffe Hellsten; Therese Mitros; Alexander Poliakov; Jeremy Schmutz; Manuel Spannagl; Haibao Tang; Xiyin Wang; Thomas Wicker; Arvind K. Bharti; Jarrod Chapman; F. Alex Feltus; Udo Gowik; Igor V. Grigoriev; Eric Lyons; Christopher A. Maher; Mihaela Martis; Apurva Narechania; Robert Otillar; Bryan W. Penning; Asaf Salamov; Yu Wang; Lifang Zhang; Nicholas C. Carpita

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum’s drought tolerance.


Nature | 2004

Community structure and metabolism through reconstruction of microbial genomes from the environment

Gene W. Tyson; Jarrod Chapman; Philip Hugenholtz; Eric E. Allen; Rachna J. Ram; Paul M. Richardson; Victor V. Solovyev; Edward M. Rubin; Daniel S. Rokhsar; Jillian F. Banfield

Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.


Nature | 2008

The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans

Nicole King; M. Jody Westbrook; Susan L. Young; Alan Kuo; Monika Abedin; Jarrod Chapman; Stephen R. Fairclough; Uffe Hellsten; Yoh Isogai; Ivica Letunic; Michael T. Marr; David Pincus; Nicholas Putnam; Antonis Rokas; Kevin J. Wright; Richard Zuzow; William Dirks; Matthew C. Good; David Goodstein; Derek Lemons; Wanqing Li; Jessica B. Lyons; Andrea Morris; Scott A. Nichols; Daniel J. Richter; Asaf Salamov; Jgi Sequencing; Peer Bork; Wendell A. Lim; Gerard Manning

Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.


Nature Biotechnology | 2004

Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78

Diego Martinez; Luis F. Larrondo; Nik Putnam; Maarten D Sollewijn Gelpke; Katherine H. Huang; Jarrod Chapman; Kevin G. Helfenbein; Preethi Ramaiya; J. Chris Detter; Frank W. Larimer; Pedro M. Coutinho; Bernard Henrissat; Randy M. Berka; Dan Cullen; Daniel S. Rokhsar

White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.


Nature | 2010

The Amphimedon queenslandica genome and the evolution of animal complexity

Mansi Srivastava; Oleg Simakov; Jarrod Chapman; Bryony Fahey; Marie Gauthier; Therese Mitros; Gemma S. Richards; Cecilia Conaco; Michael Dacre; Uffe Hellsten; Claire Larroux; Nicholas H. Putnam; Mario Stanke; Maja Adamska; Aaron E. Darling; Sandie M. Degnan; Todd H. Oakley; David C. Plachetzki; Yufeng F. Zhai; Marcin Adamski; Andrew Calcino; Scott F. Cummins; David Goodstein; Christina Harris; Daniel J. Jackson; Sally P. Leys; Shengqiang Q. Shu; Ben J. Woodcroft; Michel Vervoort; Kenneth S. Kosik

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse ‘toolkit’ of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Nature | 2008

The Trichoplax genome and the nature of placozoans

Mansi Srivastava; Emina Begovic; Jarrod Chapman; Nicholas H. Putnam; Uffe Hellsten; Takeshi Kawashima; Alan Kuo; Therese Mitros; Asaf Salamov; Meredith L. Carpenter; Ana Y. Signorovitch; Maria A. Moreno; Kai Kamm; Jane Grimwood; Jeremy Schmutz; Harris Shapiro; Igor V. Grigoriev; Leo W. Buss; Bernd Schierwater; Stephen L. Dellaporta; Daniel S. Rokhsar

As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the ∼98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a ‘eumetazoan’ clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.


Nature | 2010

The dynamic genome of Hydra

Jarrod Chapman; Ewen F. Kirkness; Oleg Simakov; Steven E. Hampson; Therese Mitros; Therese Weinmaier; Thomas Rattei; Prakash G. Balasubramanian; Jon Borman; Dana Busam; Kathryn Disbennett; Cynthia Pfannkoch; Nadezhda Sumin; Granger Sutton; Lakshmi Viswanathan; Brian Walenz; David Goodstein; Uffe Hellsten; Takeshi Kawashima; Simon Prochnik; Nicholas H. Putnam; Shengquiang Shu; Bruce Blumberg; Catherine E. Dana; Lydia Gee; Dennis F. Kibler; Lee Law; Dirk Lindgens; Daniel E. Martínez; Jisong Peng

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction.


Science | 2010

Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri

Simon Prochnik; James G. Umen; Aurora M. Nedelcu; Armin Hallmann; Stephen M. Miller; Ichiro Nishii; Patrick J. Ferris; Alan Kuo; Therese Mitros; Lillian K. Fritz-Laylin; Uffe Hellsten; Jarrod Chapman; Oleg Simakov; Stefan A. Rensing; Astrid Terry; Jasmyn Pangilinan; Vladimir V. Kapitonov; Jerzy Jurka; Asaf Salamov; Harris Shapiro; Jeremy Schmutz; Jane Grimwood; Erika Lindquist; Susan Lucas; Igor V. Grigoriev; Rüdiger Schmitt; David L. Kirk; Daniel S. Rokhsar

Going Multicellular The volvocine algae include both the unicellular Chlamydomonas and the multicellular Volvox, which diverged from one another 50 to 200 million years ago. Prochnik et al. (p. 223) compared the Volvox genome with that of Chlamydomonas to identify any genomic innovations that might have been associated with the transition to multicellularity. Size changes were observed in several protein families in Volvox, but, overall, the Volvox genome and predicted proteome were highly similar to those of Chlamydomonas. Thus, biological complexity can arise without major changes in genome content or protein domains. Comparison of the Chlamydomonas and Volvox genomes show few differences, despite their divergent life histories. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138–mega–base pair genome of V. carteri and compared its ~14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal–specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.


Genome Research | 2011

Assemblathon 1: A competitive assessment of de novo short read assembly methods

Dent Earl; Keith Bradnam; John St. John; Aaron E. Darling; Dawei Lin; Joseph Fass; Hung On Ken Yu; Vince Buffalo; Daniel R. Zerbino; Mark Diekhans; Ngan Nguyen; Pramila Ariyaratne; Wing-Kin Sung; Zemin Ning; Matthias Haimel; Jared T. Simpson; Nuno A. Fonseca; Inanc Birol; T. Roderick Docking; Isaac Ho; Daniel S. Rokhsar; Rayan Chikhi; Dominique Lavenier; Guillaume Chapuis; Delphine Naquin; Nicolas Maillet; Michael C. Schatz; David R. Kelley; Adam M. Phillippy; Sergey Koren

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


GigaScience | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen Chi Chou; Jacques Corbeil; Cristian Del Fabbro; Roderick R. Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

Collaboration


Dive into the Jarrod Chapman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uffe Hellsten

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asaf Salamov

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas H. Putnam

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Harris Shapiro

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Igor V. Grigoriev

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Isaac Ho

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Daniel Rokhsar

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge