Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Fofana is active.

Publication


Featured researches published by Isabel Fofana.


Nature Medicine | 2011

EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy

Joachim Lupberger; Mirjam B. Zeisel; Fei Xiao; Christine Thumann; Isabel Fofana; Laetitia Zona; Christopher Davis; Christopher J. Mee; Marine Turek; Sebastian Gorke; Cathy Royer; Benoit Fischer; Muhammad Zahid; Dimitri Lavillette; Judith Fresquet; François-Loïc Cosset; S Michael Rothenberg; Thomas Pietschmann; Arvind H. Patel; Patrick Pessaux; Michel Doffoel; Wolfgang Raffelsberger; Olivier Poch; Jane A. McKeating; Laurent Brino; Thomas F. Baumert

Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81–claudin-1 co-receptor associations and viral glycoprotein–dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells

Vedashree Ramakrishnaiah; Christine Thumann; Isabel Fofana; F. Habersetzer; Qiuwei Pan; Petra E. de Ruiter; Rob Willemsen; Jeroen Demmers; Victor Stalin Raj; Guido Jenster; Jaap Kwekkeboom; Hugo W. Tilanus; Bart L. Haagmans; Thomas F. Baumert; Luc J. W. van der Laan

Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicles for intercellular communication. Exosomes secreted by most cell types can mediate transfer of proteins, mRNAs, and microRNAs, but their role in the transmission of infectious agents is less established. Recent studies have shown that hepatocyte-derived exosomes containing hepatitis C virus (HCV) RNA can activate innate immune cells, but the role of exosomes in the transmission of HCV between hepatocytes remains unknown. In this study, we investigated whether exosomes transfer HCV in the presence of neutralizing antibodies. Purified exosomes isolated from HCV-infected human hepatoma Huh7.5.1 cells were shown to contain full-length viral RNA, viral protein, and particles, as determined by RT-PCR, mass spectrometry, and transmission electron microscopy. Exosomes from HCV-infected cells were capable of transmitting infection to naive human hepatoma Huh7.5.1 cells and establishing a productive infection. Even with subgenomic replicons, lacking structural viral proteins, exosome-mediated transmission of HCV RNA was observed. Treatment with patient-derived IgGs showed a variable degree of neutralization of exosome-mediated infection compared with free virus. In conclusion, this study showed that hepatic exosomes can transmit productive HCV infection in vitro and are partially resistant to antibody neutralization. This discovery sheds light on neutralizing antibodies resistant to HCV transmission by exosomes as a potential immune evasion mechanism.


Journal of Hepatology | 2011

Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies

Mirjam B. Zeisel; Isabel Fofana; Samira Fafi-Kremer; Thomas F. Baumert

Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Preventive modalities are absent and the current antiviral treatment is limited by resistance, toxicity, and high costs. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for antiviral therapy. HCV entry is a highly orchestrated process involving viral and host cell factors. These include the viral envelope glycoproteins E1 and E2, CD81, scavenger receptor BI, and tight junction proteins claudin-1 and occludin. Recent studies in preclinical models and HCV-infected patients have demonstrated that the virus has developed multiple strategies to escape host immune responses during viral entry. These include evasion from neutralizing antibodies and viral spread by cell-cell transmission. These challenges have to be taken into account for the design of efficient antiviral strategies. Thus, a detailed understanding of the mechanisms of viral entry and escape is a prerequisite to define viral and cellular targets and develop novel preventive and therapeutic antivirals. This review summarizes the current knowledge about the molecular mechanisms of HCV entry into hepatocytes, highlights novel targets and reviews the current preclinical and clinical development of compounds targeting entry. Proof-of-concept studies suggest that HCV entry inhibitors are a novel and promising class of antivirals widening the preventive and therapeutic arsenal against HCV infection.


Gastroenterology | 2010

Monoclonal Anti-Claudin 1 Antibodies Prevent Hepatitis C Virus Infection of Primary Human Hepatocytes

Isabel Fofana; Sophie E. Krieger; Fritz Grunert; Sandra Glauben; Fei Xiao; Samira Fafi–Kremer; Eric Soulier; Cathy Royer; Christine Thumann; Christopher J. Mee; Jane A. McKeating; Tatjana Dragic; Patrick Pessaux; Françoise Stoll–Keller; Catherine Schuster; John F. Thompson; Thomas F. Baumert

BACKGROUND & AIMS Hepatitis C virus (HCV) infection is a challenge to prevent and treat because of the rapid development of drug resistance and escape. Viral entry is required for initiation, spread, and maintenance of infection, making it an attractive target for antiviral strategies. The tight junction protein claudin-1 (CLDN1) has been shown to be required for entry of HCV into the cell. METHODS Using genetic immunization, we produced 6 monoclonal antibodies against the host entry factor CLDN1. The effects of antibodies on HCV infection were analyzed in human cell lines and primary human hepatocytes. RESULTS Competition and binding studies demonstrated that antibodies interacted with conformational epitopes of the first extracellular loop of CLDN1; binding of these antibodies required the motif W(30)-GLW(51)-C(54)-C(64) and residues in the N-terminal third of CLDN1. The monoclonal antibodies against CLDN1 efficiently inhibited infection by HCV of all major genotypes as well as highly variable HCV quasispecies isolated from individual patients. Furthermore, antibodies efficiently blocked cell entry of highly infectious escape variants of HCV that were resistant to neutralizing antibodies. CONCLUSIONS Monoclonal antibodies against the HCV entry factor CLDN1 might be used to prevent HCV infection, such as after liver transplantation, and might also restrain virus spread in chronically infected patients.


Journal of Experimental Medicine | 2010

Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation

Samira Fafi-Kremer; Isabel Fofana; Eric Soulier; Patric Carolla; Philip Meuleman; Geert Leroux-Roels; Arvind H. Patel; François-Loïc Cosset; Patrick Pessaux; Michel Doffoel; Philippe Wolf; Françoise Stoll-Keller; Thomas Baumert

End-stage liver disease caused by chronic hepatitis C virus (HCV) infection is a leading cause for liver transplantation (LT). Due to viral evasion from host immune responses and the absence of preventive antiviral strategies, reinfection of the graft is universal. The mechanisms by which the virus evades host immunity to reinfect the liver graft are unknown. In a longitudinal analysis of six HCV-infected patients undergoing LT, we demonstrate that HCV variants reinfecting the liver graft were characterized by efficient entry and poor neutralization by antibodies present in pretransplant serum compared with variants not detected after transplantation. Monoclonal antibodies directed against HCV envelope glycoproteins or a cellular entry factor efficiently cross-neutralized infection of human hepatocytes by patient-derived viral isolates that were resistant to autologous host-neutralizing responses. These findings provide significant insights into the molecular mechanisms of viral evasion during HCV reinfection and suggest that viral entry is a viable target for prevention of HCV reinfection of the liver graft.


Journal of Hepatology | 2013

Host-targeting agents for prevention and treatment of chronic hepatitis C - Perspectives and challenges

Mirjam B. Zeisel; Joachim Lupberger; Isabel Fofana; Thomas F. Baumert

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma worldwide. Furthermore, HCV-induced liver disease is a major indication of liver transplantation. In the past years, direct-acting antivirals (DAAs) targeting HCV enzymes have been developed. DAAs increase the virologic response to anti-HCV therapy but may lead to selection of drug-resistant variants and treatment failure. To date, strategies to prevent HCV infection are still lacking and antiviral therapy in immunocompromised patients, patients with advanced liver disease and HIV/HCV-co-infection remains limited. Alternative or complementary approaches addressing the limitations of current antiviral therapies are to boost the hosts innate immunity or interfere with host factors required for pathogenesis. Host-targeting agents (HTAs) provide an interesting perspective for novel antiviral strategies against viral hepatitis since they have (i) a high genetic barrier to resistance, (ii) a pan-genotypic antiviral activity, and (iii) complementary mechanisms of action to DAAs and might therefore act in a synergistic manner with current standard of care or DAAs in clinical development. This review highlights HTAs against HCV infection that have potential as novel antivirals and are in preclinical or clinical development.


Nature Biotechnology | 2015

Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody

Laurent Mailly; Fei Xiao; Joachim Lupberger; Garrick K. Wilson; Philippe Aubert; Francois H.T. Duong; Diego Calabrese; Céline Leboeuf; Isabel Fofana; Christine Thumann; Simonetta Bandiera; M. Lütgehetmann; T. Volz; Christopher Davis; Helen J. Harris; Christopher J. Mee; Erika Girardi; Béatrice Chane-Woon-Ming; Maria Ericsson; Nicola F. Fletcher; Ralf Bartenschlager; Patrick Pessaux; Koen Vercauteren; Philip Meuleman; Pascal Villa; Lars Kaderali; Sébastien Pfeffer; Markus H. Heim; Michel Neunlist; Mirjam B. Zeisel

Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer. Cell entry of HCV and other pathogens is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver–chimeric mouse model, we show that a monoclonal antibody specific for the TJ protein claudin-1 (ref. 7) eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection by means of host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy.


Hepatology | 2013

The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination.

Muhammad Zahid; Marine Turek; Fei Xiao; Viet Loan Dao Thi; Maryse Guerin; Isabel Fofana; Philippe Bachellier; John F. Thompson; Leen Delang; Johan Neyts; Dorothea Bankwitz; Thomas Pietschmann; Marlène Dreux; François-Loïc Cosset; Fritz Grunert; Thomas F. Baumert; Mirjam B. Zeisel

Scavenger receptor class B type I (SR‐BI) is a high‐density lipoprotein (HDL) receptor highly expressed in the liver and modulating HDL metabolism. Hepatitis C virus (HCV) is able to directly interact with SR‐BI and requires this receptor to efficiently enter into hepatocytes to establish productive infection. A complex interplay between lipoproteins, SR‐BI and HCV envelope glycoproteins has been reported to take place during this process. SR‐BI has been demonstrated to act during binding and postbinding steps of HCV entry. Although the SR‐BI determinants involved in HCV binding have been partially characterized, the postbinding function of SR‐BI remains largely unknown. To uncover the mechanistic role of SR‐BI in viral initiation and dissemination, we generated a novel class of anti–SR‐BI monoclonal antibodies that interfere with postbinding steps during the HCV entry process without interfering with HCV particle binding to the target cell surface. Using the novel class of antibodies and cell lines expressing murine and human SR‐BI, we demonstrate that the postbinding function of SR‐BI is of key impact for both initiation of HCV infection and viral dissemination. Interestingly, this postbinding function of SR‐BI appears to be unrelated to HDL interaction but to be directly linked to its lipid transfer function. Conclusion: Taken together, our results uncover a crucial role of the SR‐BI postbinding function for initiation and maintenance of viral HCV infection that does not require receptor‐E2/HDL interactions. The dissection of the molecular mechanisms of SR‐BI–mediated HCV entry opens a novel perspective for the design of entry inhibitors interfering specifically with the proviral function of SR‐BI. (HEPATOLOGY 2013)


Gastroenterology | 2012

Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies

Isabel Fofana; Samira Fafi–Kremer; Patric Carolla; Catherine Fauvelle; Muhammad Zahid; Marine Turek; Laura Heydmann; Karine Cury; Juliette Hayer; Christophe Combet; François-Loïc Cosset; Thomas Pietschmann; Marie Sophie Hiet; Ralf Bartenschlager; François Habersetzer; Michel Doffoel; Zhen Yong Keck; Steven K. H. Foung; Mirjam B. Zeisel; Françoise Stoll–Keller; Thomas F. Baumert

BACKGROUND & AIMS The development of vaccines and other strategies to prevent hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first step of infection; this process involves several viral and host factors and is targeted by host-neutralizing responses. Although the roles of host factors in HCV entry have been well characterized, their involvement in evasion of immune responses is poorly understood. We used acute infection of liver graft as a model to investigate the molecular mechanisms of viral evasion. METHODS We studied factors that contribute to evasion of host immune responses using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV that express viral envelopes from patients who have undergone liver transplantation. These viruses were used to infect hepatoma cell lines that express different levels of HCV entry factors. RESULTS By using reverse genetic analyses, we identified altered use of host-cell entry factors as a mechanism by which HCV evades host immune responses. Mutations that alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies. Kinetic studies showed that these mutations affect virus-antibody interactions during postbinding steps of the HCV entry process. Functional studies with a large panel of patient-derived antibodies showed that this mechanism mediates viral escape, leading to persistent infection in general. CONCLUSIONS We identified a mechanism by which HCV evades host immune responses, in which use of cell entry factors evolves with escape from neutralizing antibodies. These findings advance our understanding of the pathogenesis of HCV infection and might be used to develop antiviral strategies and vaccines.


Gut | 2015

Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C.

Fei Xiao; Isabel Fofana; Christine Thumann; Laurent Mailly; Roxane Alles; Eric Robinet; Nicolas Meyer; Mickaël Schaeffer; François Habersetzer; Michel Doffoel; Pieter Leyssen; Johan Neyts; Mirjam B. Zeisel; Thomas Baumert

Objective Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. Design Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. Results Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. Conclusions Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens.

Collaboration


Dive into the Isabel Fofana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Xiao

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Michel Doffoel

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge