Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Valera is active.

Publication


Featured researches published by Isabel Valera.


international world wide web conferences | 2017

Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment

Muhammad Bilal Zafar; Isabel Valera; Manuel Gomez Rodriguez; Krishna P. Gummadi

Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the given historical data. However, it is quite possible that the optimally trained classifier makes decisions for people belonging to different social groups with different misclassification rates (e.g., misclassification rates for females are higher than for males), thereby placing these groups at an unfair disadvantage. To account for and avoid such unfairness, in this paper, we introduce a new notion of unfairness, disparate mistreatment, which is defined in terms of misclassification rates. We then propose intuitive measures of disparate mistreatment for decision boundary-based classifiers, which can be easily incorporated into their formulation as convex-concave constraints. Experiments on synthetic as well as real world datasets show that our methodology is effective at avoiding disparate mistreatment, often at a small cost in terms of accuracy.


international conference on data mining | 2015

Modeling Adoption and Usage of Competing Products

Isabel Valera; Manuel Gomez-Rodriguez

The emergence and wide-spread use of online social networks has led to a dramatic increase on the availability of social activity data. Importantly, this data can be exploited to investigate, at a microscopic level, some of the problems that have captured the attention of economists, marketers and sociologists for decades, such as, e.g., product adoption, usage and competition. In this paper, we propose a continuous-time probabilistic model, based on temporal point processes, for the adoption and frequency of use of competing products, where the frequency of use of one product can be modulated by those of others. This model allows us to efficiently simulate the adoption and recurrent usages of competing products, and generate traces in which we can easily recognize the effect of social influence, recency and competition. We then develop an inference method to efficiently fit the model parameters by solving a convex program. The problem decouples into a collection of smaller subproblems, thus scaling easily to networks with hundred of thousands of nodes. We validate our model over synthetic and real diffusion data gathered from Twitter, and show that the proposed model does not only provides a good fit to the data and more accurate predictions than alternatives but also provides interpretable model parameters, which allow us to gain insights into some of the factors driving product adoption and frequency of use.


international world wide web conferences | 2017

Distilling Information Reliability and Source Trustworthiness from Digital Traces

Behzad Tabibian; Isabel Valera; Mehrdad Farajtabar; Le Song; Bernhard Schölkopf; Manuel Gomez-Rodriguez

Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their contents. These explicit feedback mechanisms can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy measurements, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the large volume of digital traces left by the users within knowledge repositories also reflect information reliability and source trustworthiness. In particular, we propose a temporal point process modeling framework which links the temporal behavior of the users to information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces of the evaluations provided by these users. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

Infinite Factorial Unbounded-State Hidden Markov Model

Isabel Valera; Francisco J. R. Ruiz; Fernando Pérez-Cruz

There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markov models (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem.


international conference on machine learning | 2017

Automatic Discovery of the Statistical Types of Variables in a Dataset

Isabel Valera; Zoubin Ghahramani

Humboldt Research Fellowship for Postdoctoral Researchers, which funded this research during her stay at the Max Planck Institute for Software Systems. ATI Grant EP/N510129/1 EPSRC Grant EP/N014162/1 Google


european signal processing conference | 2015

A Bayesian nonparametric approach for blind multiuser channel estimation

Isabel Valera; Francisco J. R. Ruiz; Lennart Svensson; Fernando Pérez-Cruz

In many modern multiuser communication systems, users are allowed to enter and leave the system at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the system depends on how accurately this parameter is estimated over time. We address the problem of blind joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop a Bayesian nonparametric model based on the Markov Indian buffet process and an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our experimental results show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios.


Neural Computation | 2016

Infinite continuous feature model for psychiatric comorbidity analysis

Isabel Valera; Francisco J. R. Ruiz; Pablo M. Olmos; Carlos Blanco; Fernando Pérez-Cruz

We aim at finding the comorbidity patterns of substance abuse, mood and personality disorders using the diagnoses from the National Epidemiologic Survey on Alcohol and Related Conditions database. To this end, we propose a novel Bayesian nonparametric latent feature model for categorical observations, based on the Indian buffet process, in which the latent variables can take values between 0 and 1. The proposed model has several interesting features for modeling psychiatric disorders. First, the latent features might be off, which allows distinguishing between the subjects who suffer a condition and those who do not. Second, the active latent features take positive values, which allows modeling the extent to which the patient has that condition. We also develop a new Markov chain Monte Carlo inference algorithm for our model that makes use of a nested expectation propagation procedure.


Cognitive Information Processing (CIP), 2014 4th International Workshop on | 2014

Infinite factorial unbounded hidden Markov model for blind multiuser channel estimation

Isabel Valera; Francisco J. R. Ruiz; Fernando Pérez-Cruz

Bayesian nonparametric models allow solving estimation and detection problems with an unbounded number of degrees of freedom. In multiuser multiple-input multiple-output (MIMO) communication systems we might not know the number of active users and the channel they face, and assuming maximal scenarios (maximum number of transmitters and maximum channel length) might degrade the receiver performance. In this paper, we propose a Bayesian nonparametric prior and its associated inference algorithm, which is able to detect an unbounded number of users with an unbounded channel length. This generative model provides the dispersive channel model for each user and a probabilistic estimate for each transmitted symbol in a fully blind manner, i.e., without the need of pilot (training) symbols.


Eurasip Journal on Wireless Communications and Networking | 2013

On the maximum likelihood estimation of the ToA under an imperfect path loss exponent

Isabel Valera; Bamrung Tau Sieskul; Joaquín Míguez

We investigate the estimation of the time of arrival (ToA) of a radio signal transmitted over a flat-fading channel. The path attenuation is assumed to depend only on the transmitter-receiver distance and the path loss exponent (PLE) which, in turn, depends on the physical environment. All previous approaches to the problem either assume that the PLE is perfectly known or rely on estimators of the ToA which do not depend on the PLE. In this paper, we introduce a novel analysis of the performance of the maximum likelihood (ML) estimator of the ToA under an imperfect knowledge of the PLE. Specifically, we carry out a Taylor series expansion that approximates the bias and the root mean square error of the ML estimator in closed form as a function of the PLE error. The analysis is first carried out for a path loss model in which the received signal gain depends only on the PLE and the transmitter-receiver distance. Then, we extend the obtained results to account also for shadow fading scenarios. Our computer simulations show that this approximate analysis is accurate when the signal-to-noise ratio (SNR) of the received signal is medium to high. A simple Monte Carlo method based on the analysis is also proposed. This technique is computationally efficient and yields a better approximation of the ML estimator in the low SNR region. The obtained analytical (and Monte Carlo) approximations can be useful at the design stage of wireless communication and localization systems.


neural information processing systems | 2014

Shaping Social Activity by Incentivizing Users

Mehrdad Farajtabar; Nan Du; Manuel Gomez-Rodriguez; Isabel Valera; Hongyuan Zha; Le Song

Collaboration


Dive into the Isabel Valera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Pérez-Cruz

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lennart Svensson

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge