Zoubin Ghahramani
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zoubin Ghahramani.
Machine Learning | 1999
Michael I. Jordan; Zoubin Ghahramani; Tommi S. Jaakkola; Lawrence K. Saul
This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, which exploit laws of large numbers to transform the original graphical model into a simplified graphical model in which inference is efficient. Inference in the simpified model provides bounds on probabilities of interest in the original model. We describe a general framework for generating variational transformations based on convex duality. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each case.
Nature Neuroscience | 2000
Daniel M. Wolpert; Zoubin Ghahramani
Unifying principles of movement have emerged from the computational study of motor control. We review several of these principles and show how they apply to processes such as motor planning, control, estimation, prediction and learning. Our goal is to demonstrate how specific models emerging from the computational approach provide a theoretical framework for movement neuroscience.
neural information processing systems | 1995
Zoubin Ghahramani; Michael I. Jordan
Hidden Markov models (HMMs) have proven to be one of the most widely used tools for learning probabilistic models of time series data. In an HMM, information about the past is conveyed through a single discrete variable—the hidden state. We discuss a generalization of HMMs in which this state is factored into multiple state variables and is therefore represented in a distributed manner. We describe an exact algorithm for inferring the posterior probabilities of the hidden state variables given the observations, and relate it to the forward–backward algorithm for HMMs and to algorithms for more general graphical models. Due to the combinatorial nature of the hidden state representation, this exact algorithm is intractable. As in other intractable systems, approximate inference can be carried out using Gibbs sampling or variational methods. Within the variational framework, we present a structured approximation in which the the state variables are decoupled, yielding a tractable algorithm for learning the parameters of the model. Empirical comparisons suggest that these approximations are efficient and provide accurate alternatives to the exact methods. Finally, we use the structured approximation to model Bachs chorales and show that factorial HMMs can capture statistical structure in this data set which an unconstrained HMM cannot.
Neural Computation | 1999
Sam T. Roweis; Zoubin Ghahramani
Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models.
The International Journal of Robotics Research | 2004
Sebastian Thrun; Yufeng Liu; Daphne Koller; Andrew Y. Ng; Zoubin Ghahramani; Hugh F. Durrant-Whyte
In this paper we describe a scalable algorithm for the simultaneous mapping and localization (SLAM) problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot. The vast majority of SLAM algorithms are based on the extended Kalman filter (EKF). In this paper we advocate an algorithm that relies on the dual of the EKF, the extended information filter (EIF). We show that when represented in the information form, map posteriors are dominated by a small number of links that tie together nearby features in the map. This insight is developed into a sparse variant of the EIF, called the sparse extended information filter (SEIF). SEIFs represent maps by graphical networks of features that are locally interconnected, where links represent relative information between pairs of nearby features, as well as information about the robot’s pose relative to the map. We show that all essential update equations in SEIFs can be executed in constant time, irrespective of the size of the map. We also provide empirical results obtained for a benchmark data set collected in an outdoor environment, and using a multi-robot mapping simulation.
Trends in Cognitive Sciences | 2001
Daniel M. Wolpert; Zoubin Ghahramani; J. Randall Flanagan
Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.
Adaptive Processing of Sequences and Data Structures, International Summer School on Neural Networks, "E.R. Caianiello"-Tutorial Lectures | 1997
Zoubin Ghahramani
This paper presents a probabilistic framework for learning models of temporal data. We express these models using the Bayesian network formalism, a marriage of probability theory and graph theory in which dependencies between variables are expressed graphically. The graph not only allows the user to understand which variables affect which other ones, but also serves as the backbone for efficiently computing marginal and conditional probabilities that may be required for inference and learning.
International Journal of Pattern Recognition and Artificial Intelligence | 2001
Zoubin Ghahramani
We provide a tutorial on learning and inference in hidden Markov models in the context of the recent literature on Bayesian networks. This perspective make sit possible to consider novel generalizations to hidden Markov models with multiple hidden state variables, multiscale representations, and mixed discrete and continuous variables. Although exact inference in these generalizations is usually intractable, one can use approximate inference in these generalizations is usually intractable, one can use approximate inference algorithms such as Markov chain sampling and variational methods. We describe how such methods are applied to these generalized hidden Markov models. We conclude this review with a discussion of Bayesian methods for model selection in generalized HMMs.
neural information processing systems | 1998
Naonori Ueda; Ryohei Nakano; Zoubin Ghahramani; Geoffrey E. Hinton
We present a split-and-merge expectation-maximization (SMEM) algorithm to overcome the local maxima problem in parameter estimation of finite mixture models. In the case of mixture models, local maxima often involve having too many components of a mixture model in one part of the space and too few in another, widely separated part of the space. To escape from such configurations, we repeatedly perform simultaneous split-and-merge operations using a new criterion for efficiently selecting the split-and-merge candidates. We apply the proposed algorithm to the training of gaussian mixtures and mixtures of factor analyzers using synthetic and real data and show the effectiveness of using the split- and-merge operations to improve the likelihood of both the training data and of held-out test data. We also show the practical usefulness of the proposed algorithm by applying it to image compression and pattern recognition problems.
Experimental Brain Research | 1995
Daniel M. Wolpert; Zoubin Ghahramani; Michael I. Jordan
There are several invariant features of pointto-point human arm movements: trajectories tend to be straight, smooth, and have bell-shaped velocity profiles. One approach to accounting for these data is via optimization theory; a movement is specified implicitly as the optimum of a cost function, e.g., integrated jerk or torque change. Optimization models of trajectory planning, as well as models not phrased in the optimization framework, generally fall into two main groups-those specified in kinematic coordinates and those specified in dynamic coordinates. To distinguish between these two possibilities we have studied the effects of artificial visual feedback on planar two-joint arm movements. During self-paced point-to-point arm movements the visual feedback of hand position was altered so as to increase the perceived curvature of the movement. The perturbation was zero at both ends of the movement and reached a maximum at the midpoint of the movement. Cost functions specified by hand coordinate kinematics predict adaptation to increased curvature so as to reduce the visual curvature, while dynamically specified cost functions predict no adaptation in the underlying trajectory planner, provided the final goal of the movement can still be achieved. We also studied the effects of reducing the perceived curvature in transverse movements, which are normally slightly curved. Adaptation should be seen in this condition only if the desired trajectory is both specified in kinematic coordinates and actually curved. Increasing the perceived curvature of normally straight sagittal movements led to significant (P<0.001) corrective adaptation in the curvature of the actual hand movement; the hand movement became curved, thereby reducing the visually perceived curvature. Increasing the curvature of the normally curved transverse movements produced a significant (P<0.01) corrective adaptation; the hand movement became straighter, thereby again reducing the visually perceived curvature. When the curvature of naturally curved transverse movements was reduced, there was no significant adaptation (P>0.05). The results of the curvature-increasing study suggest that trajectories are planned in visually based kinematic coordinates. The results of the curvature-reducing study suggest that the desired trajectory is straight in visual space. These results are incompatible with purely dynamicbased models such as the minimum torque change model. We suggest that spatial perception-as mediated by vision-plays a fundamental role in trajectory planning.