Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Weigand is active.

Publication


Featured researches published by Isabel Weigand.


Endocrinology | 2015

Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells

Silviu Sbiera; Ellen Leich; Gerhard Liebisch; Iuliu Sbiera; Andreas Schirbel; Laura Wiemer; Silke Matysik; Carolin Eckhardt; Felix Gardill; Annemarie Gehl; Sabine Kendl; Isabel Weigand; Margarita Bala; Cristina L. Ronchi; Timo Deutschbein; Gerd Schmitz; Andreas Rosenwald; Bruno Allolio; Martin Fassnacht; Matthias Kroiss

Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer.


European Journal of Endocrinology | 2016

Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas

Cristina L. Ronchi; Erika Peverelli; Sabine Herterich; Isabel Weigand; Giovanna Mantovani; Thomas Schwarzmayr; Silviu Sbiera; Bruno Allolio; Jurgen Honegger; Silke Appenzeller; Andrea Lania; Martin Reincke; Davide Calebiro; Anna Spada; Michael Buchfelder; Joerg Flitsch; Tim M. Strom; Martin Fassnacht

CONTEXT Alterations in the cAMP signaling pathway are common in hormonally active endocrine tumors. Somatic mutations at GNAS are causative in 30-40% of GH-secreting adenomas. Recently, mutations affecting the USP8 and PRKACA gene have been reported in ACTH-secreting pituitary adenomas and cortisol-secreting adrenocortical adenomas respectively. However, the pathogenesis of many GH-secreting adenomas remains unclear. AIM Comprehensive genetic characterization of sporadic GH-secreting adenomas and identification of new driver mutations. DESIGN Screening for somatic mutations was performed in 67 GH-secreting adenomas by targeted sequencing for GNAS, PRKACA, and USP8 mutations (n=31) and next-generation exome sequencing (n=36). RESULTS By targeted sequencing, known activating mutations in GNAS were detected in five cases (16.1%), while no somatic mutations were observed in both PRKACA and USP8. Whole-exome sequencing identified 132 protein-altering somatic mutations in 31/36 tumors with a median of three mutations per sample (range: 1-13). The only recurrent mutations have been observed in GNAS (31.4% of cases). However, seven genes involved in cAMP signaling pathway were affected in 14 of 36 samples and eight samples harbored variants in genes involved in the calcium signaling or metabolism. At the enrichment analysis, several altered genes resulted to be associated with developmental processes. No significant correlation between genetic alterations and the clinical data was observed. CONCLUSION This study provides a comprehensive analysis of somatic mutations in a large series of GH-secreting adenomas. No novel recurrent genetic alterations have been observed, but the data suggest that beside cAMP pathway, calcium signaling might be involved in the pathogenesis of these tumors.


The Journal of Clinical Endocrinology and Metabolism | 2016

Genetic landscape of sporadic unilateral adrenocortical adenomas without PRKACA p.Leu206Arg mutation

Cristina L. Ronchi; Guido Di Dalmazi; Simon Faillot; Silviu Sbiera; Guillaume Assié; Isabel Weigand; Davide Calebiro; Thomas Schwarzmayr; Silke Appenzeller; Beatrice Rubin; Jens Waldmann; Carla Scaroni; Detlef K. Bartsch; Franco Mantero; Massimo Mannelli; Darko Kastelan; Iacopo Chiodini; Jérôme Bertherat; Martin Reincke; Tim M. Strom; Martin Fassnacht; Felix Beuschlein

CONTEXT Adrenocortical adenomas (ACAs) are among the most frequent human neoplasias. Genetic alterations affecting the cAMP/protein kinase A signaling pathway are common in cortisol-producing ACAs, whereas activating mutations in the gene encoding β-catenin (CTNNB1) have been reported in a subset of both benign and malignant adrenocortical tumors. However, the molecular pathogenesis of most ACAs is still largely unclear. OBJECTIVE The aim of the study was to define the genetic landscape of sporadic unilateral ACAs. DESIGN AND SETTING Next-generation whole-exome sequencing was performed on fresh-frozen tumor samples and corresponding normal tissue samples. PATIENTS Ninety-nine patients with ACAs (74 cortisol-producing and 25 endocrine inactive) negative for p.Leu206Arg PRKACA mutation. MAIN OUTCOME MEASURES Identification of known and/or new genetic alterations potentially involved in adrenocortical tumorigenesis and autonomous hormone secretion, genotype-phenotype correlation. RESULTS A total of 706 somatic protein-altering mutations were detected in 88 of 99 tumors (median, six per tumor). We identified several mutations in genes of the cAMP/protein kinase A pathway, including three novel mutations in PRKACA, associated with female sex and Cushings syndrome. We also found genetic alterations in different genes involved in the Wnt/β-catenin pathway, associated with larger tumors and endocrine inactivity, and notably, in many genes of the Ca(2+)-signaling pathway. Finally, by comparison of our genetic data with those available in the literature, we describe a comprehensive genetic landscape of unilateral ACAs. CONCLUSIONS This study provides the largest sequencing effort on ACAs to date. We thereby identified somatic alterations affecting known and novel pathways potentially involved in adrenal tumorigenesis.


Trends in Endocrinology and Metabolism | 2015

The New Molecular Landscape of Cushing's Disease.

Silviu Sbiera; Timo Deutschbein; Isabel Weigand; Martin Reincke; Martin Fassnacht; Bruno Allolio

Cushings disease (CD) is caused by corticotropin-secreting pituitary adenomas and results in substantial morbidity and mortality. Its molecular basis has remained poorly understood until the past few years, when several proteins and genes [such as testicular orphan nuclear receptor 4 (TR4) and heat shock protein 90 (HSP90)] were found to play key roles in the disease. Most recently, mutations in the gene of ubiquitin-specific peptidase 8 (USP8) increasing its deubiquination activity were discovered in a high percentage of corticotroph adenomas. Here, we will discuss emerging insights in the molecular alterations that finally result in CD. The therapeutic potential of these findings needs to be carefully evaluated in the near future, hopefully resulting in new treatment options for this devastating disorder.


Oncotarget | 2017

Livin/BIRC7 expression as malignancy marker in adrenocortical tumors

Barbara Altieri; Silviu Sbiera; Silvia Della Casa; Isabel Weigand; Vanessa Wild; Sonja Steinhauer; Guido Fadda; Arkadius Kocot; Michaela Bekteshi; Egle M. Mambretti; Andreas Rosenwald; Alfredo Pontecorvi; Martin Fassnacht; Cristina L. Ronchi

Livin/BIRC7 is a member of the inhibitors of apoptosis proteins family, which are involved in tumor development through the inhibition of caspases. Aim was to investigate the expression of livin and other members of its pathway in adrenocortical tumors and in the adrenocortical carcinoma (ACC) cell line NCI-H295R. The mRNA expression of livin, its isoforms α and β, XIAP, CASP3 and DIABLO was evaluated by qRT-PCR in 82 fresh-frozen adrenal tissues (34 ACC, 25 adenomas = ACA, 23 normal adrenal glands = NAG). Livin protein expression was assessed by immunohistochemistry in 270 paraffin-embedded tissues (192 ACC, 58 ACA, 20 NAG). Livin, CASP3 and cleaved caspase-3 were evaluated in NCI-H295R after induction of livin overexpression. Relative livin mRNA expression was significantly higher in ACC than in ACA and NAG (0.060 ± 0.116 vs 0.004 ± 0.014 and 0.002 ± 0.009, respectively, p < 0.01), being consistently higher in tumors than in adjacent NAG and isoform β more expressed than α. No significant differences in CASP3, XIAP and DIABLO levels were found among these groups. In immunohistochemistry, livin was localized in both cytoplasm and nuclei. The ratio between cytoplasmic and nuclear staining was significantly higher in ACC (1.51 ± 0.66) than in ACA (0.80 ± 0.35) and NAG (0.88 ± 0.27; p < 0.0001). No significant correlations were observed between livin expression and histopathological parameters or clinical outcome. In NCI-H295R cells, the livin overexpression slightly reduced the activation of CASP3, but did not correlate with cell viability. In conclusion, livin is specifically over-expressed in ACC, suggesting that it might be involved in adrenocortical tumorigenesis and represent a new molecular marker of malignancy.


PLOS ONE | 2016

Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas

Silviu Sbiera; Marianna A. Tryfonidou; Isabel Weigand; Guy C. M. Grinwis; Bart Broeckx; Sabine Herterich; Bruno Allolio; Timo Deutschbein; Martin Fassnacht; Björn P. Meij

Purpose Cushing’s disease (CD), also known as pituitary-dependent hyperadrenocorticism, is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. Affected humans and dogs have similar clinical manifestations, however, the incidence of the canine disease is thousand-fold higher. This makes the dog an obvious model for studying the pathogenesis of pituitary-dependent hyperadrenocorticism. Despite certain similarities identified at the molecular level, the question still remains whether the two species have a shared oncogenetic background. Recently, hotspot recurrent mutations in the gene encoding for ubiquitin specific protease 8 (USP8) have been identified as the main driver behind the formation of ACTH-secreting pituitary adenomas in humans. In this study, we aimed to verify whether USP8 mutations also play a role in the development of such tumours in dogs. Methods Presence of USP8 mutations was analysed by Sanger and PCR-cloning sequencing in 38 canine ACTH-secreting adenomas. Furthermore, the role of USP8 and EGFR protein expression was assessed by immunohistochemistry in a subset of 25 adenomas. Results None of the analysed canine ACTH-secreting adenomas presented mutations in the USP8 gene. In a subset of these adenomas, however, we observed an increased nuclear expression of USP8, a phenotype characteristic for the USP8 mutated human tumours, that correlated with smaller tumour size but elevated ACTH production in those tumours. Conclusions Canine ACTH-secreting pituitary adenomas lack mutations in the USP8 gene suggesting a different genetic background of pituitary tumourigenesis in dogs. However, elevated nuclear USP8 protein expression in a subset of tumours was associated with a similar phenotype as in their human counterparts, indicating a possible end-point convergence of the different genetic backgrounds in the two species. In order to establish the dog as a useful animal model for the study of CD, further comprehensive studies are needed.


Hormone and Metabolic Research | 2016

Mechanisms of Aberrant PKA Activation by Cα Subunit Mutations

Davide Calebiro; Kerstin Bathon; Isabel Weigand

Somatic mutations in PRKACA, coding for the catalytic α subunit of protein kinase A (PKA), have been recently identified as the most frequent genetic alteration in cortisol-secreting adrenocortical adenomas, which are responsible for adrenal Cushings syndrome. The mutations identified so far lie at the interface between the catalytic (C) and regulatory (R) subunit of PKA. Detailed functional studies of the most frequent of these mutations (L206R) as well as of another one in the same region of the C subunit (199_200insW) have revealed that these mutations cause constitutive activation of PKA and lack of regulation by cAMP. This is due to interference with the binding of the R subunit, which keeps the C subunit inactive in the absence of cyclic AMP. Here, we review these recent findings, with a particular focus on the mechanisms of action of PRKACA mutations.


Scientific Reports | 2017

Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas

Isabel Weigand; Cristina L. Ronchi; Marthe Rizk-Rabin; Guido Di Dalmazi; Vanessa Wild; Kerstin Bathon; Beatrice Rubin; Davide Calebiro; Felix Beuschlein; Jérôme Bertherat; Martin Fassnacht; Silviu Sbiera

Somatic mutations in protein kinase A catalytic α subunit (PRKACA) were found to be causative for 30–40% of cortisol-producing adenomas (CPA) of the adrenal gland, rendering PKA signalling constitutively active. In its resting state, PKA is a stable and inactive heterotetramer, consisting of two catalytic and two regulatory subunits with the latter inhibiting PKA activity. The human genome encodes three different PKA catalytic subunits and four different regulatory subunits that are preferentially expressed in different organs. In normal adrenal glands all regulatory subunits are expressed, while CPA exhibit reduced protein levels of the regulatory subunit IIβ. In this study, we linked for the first time the loss of RIIβ protein levels to the PRKACA mutation status and found the down-regulation of RIIβ to arise post-transcriptionally. We further found the PKA subunit expression pattern of different tumours is also present in the zones of the normal adrenal cortex and demonstrate that the different PKA subunits have a differential expression pattern in each zone of the normal adrenal gland, indicating potential specific roles of these subunits in the regulation of different hormones secretion.


The Journal of Clinical Endocrinology and Metabolism | 2018

Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication.

Lippert J; Appenzeller S; Liang R; Silviu Sbiera; Kircher S; Barbara Altieri; Nanda I; Isabel Weigand; Gehrig A; Sonja Steinhauer; Riemens Rjm; Andreas Rosenwald; Müller Cr; Matthias Kroiss; Rost S; Martin Fassnacht; Cristina Ronchi

Context Adrenocortical carcinoma (ACC) has a heterogeneous prognosis, and current medical therapies have limited efficacy in its advanced stages. Genome-wide multiomics studies identified molecular patterns associated with clinical outcome. Objective Here, we aimed at identifying a molecular signature useful for both personalized prognostic stratification and druggable targets, using methods applicable in clinical routine. Design In total, 117 tumor samples from 107 patients with ACC were analyzed. Targeted next-generation sequencing of 160 genes and pyrosequencing of 4 genes were applied to formalin-fixed, paraffin-embedded (FFPE) specimens to detect point mutations, copy number alterations, and promoter region methylation. Molecular results were combined with clinical/histopathological parameters (tumor stage, age, symptoms, resection status, and Ki-67) to predict progression-free survival (PFS). Results In addition to known driver mutations, we detected recurrent alterations in genes not previously associated with ACC (e.g., NOTCH1, CIC, KDM6A, BRCA1, BRCA2). Best prediction of PFS was obtained integrating molecular results (more than one somatic mutation, alterations in Wnt/β-catenin and p53 pathways, high methylation pattern) and clinical/histopathological parameters into a combined score (P < 0.0001, χ2 = 68.6). Accuracy of prediction for early disease progress was 83.3% (area under the receiver operating characteristic curve: 0.872, 95% confidence interval 0.80 to 0.94). Furthermore, 17 potentially targetable alterations were found in 64 patients (e.g., in CDK4, NOTCH1, NF1, MDM2, and EGFR and in DNA repair system). Conclusions This study demonstrates that molecular profiling of FFPE tumor samples improves prognostication of ACC beyond clinical/histopathological parameters and identifies new potential drug targets. These findings pave the way to precision medicine in this rare disease.


Molecular and Cellular Endocrinology | 2018

Hsp90 inhibition in adrenocortical carcinoma: Limited drug synergism with mitotane

Silviu Sbiera; Sabine Kendl; Isabel Weigand; Iuliu Sbiera; Martin Fassnacht; Matthias Kroiss

90 kDa heat shock proteins (Hsp90) act as protein chaperones and play a role in modulating endoplasmic reticulum (ER) stress. Hsp90 inhibitors are under clinical investigation as cancer treatment. Mitotane therapy of adrenocortical carcinoma (ACC) has been shown to act through lipid-induced ER-stress. To explore the potential of Hsp90 inhibitors in ACC as a single agent and in combination with mitotane, we analyzed two independent gene expression data sets of adrenal tumors in silico and treated the ACC cell line model NCI-H295 with Hsp90 inhibitors BIIB021 (B) and CCT18159 (C) alone and in combination with mitotane. ER-stress markers were monitored by immunoblotting. Drug synergism was quantified using the median effect model with cell viability as read-out. Cytosolic Hsp90 isoforms AA1 and AB1 were significantly overexpressed in ACC. Viability of H295 cells was impaired by B and C as single agents with an EC50 of 5.7 × 10-6M and 12.1 × 10-6M. B but not C dose-dependently increased XBP1 splicing and CHOP expression indicative of ER-stress activation. ER-stress marker expression was enhanced by co-incubation of B with 10  μM but not 5  μM mitotane. Maximal CHOP expression was induced by 25 μM mitotane alone with no additional effect of B. Combination indices (CI) of B and C with mitotane ranged from 0.64 to 1.38 and 0.68 to 1.30, respectively where CI values < 0.5 support clinically-relevant drug synergism. In conclusion, Hsp90 paralogs are differentially expressed in ACC and B but not C activates ER-stress in ACC cells. No meaningful drug synergism of Hsp90 inhibitors with mitotane was observed.

Collaboration


Dive into the Isabel Weigand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Allolio

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge