Andreas Schlosser
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Schlosser.
Genes & Development | 2009
Bert Maier; Sabrina Wendt; Jens T. Vanselow; Silke Reischl; Stefanie Oehmke; Andreas Schlosser; Achim Kramer
Post-translational processes are essential for the generation and dynamics of mammalian circadian rhythms. In particular, phosphorylation of the key circadian protein PER2 precisely controls the period and phase of circadian oscillations. However, the mechanisms underlying that control are poorly understood. Here, we identified in a high-throughput RNAi-based genetic screen casein kinase 2 (CK2) as a PER2-phosphorylating kinase and novel component of the mammalian circadian clock. When CK2 subunits are silenced by RNAi or when CK2 activity is inhibited pharmacologically, circadian rhythms are disrupted. CK2 binds to PER2 in vivo, phosphorylates PER2 specifically at N-terminal residues in vitro, and supports normal nuclear PER2 accumulation. Mutation of CK2 phosphorylation sites decreases PER2 stability and copies CK2 inhibition regarding oscillation dynamics. We propose a new concept of how PER2 phosphorylation and stabilization can set the clock speed in opposite directions, dependent on the phase of action.
Nucleic Acids Research | 2014
Juan-José Vasquez; Chung-Chau Hon; Jens T. Vanselow; Andreas Schlosser; T. Nicolai Siegel
While gene expression is a fundamental and tightly controlled cellular process that is regulated at multiple steps, the exact contribution of each step remains unknown in any organism. The absence of transcription initiation regulation for RNA polymerase II in the protozoan parasite Trypanosoma brucei greatly simplifies the task of elucidating the contribution of translation to global gene expression. Therefore, we have sequenced ribosome-protected mRNA fragments in T. brucei, permitting the genome-wide analysis of RNA translation and translational efficiency. We find that the latter varies greatly between life cycle stages of the parasite and ∼100-fold between genes, thus contributing to gene expression to a similar extent as RNA stability. The ability to map ribosome positions at sub-codon resolution revealed extensive translation from upstream open reading frames located within 5′ UTRs and enabled the identification of hundreds of previously un-annotated putative coding sequences (CDSs). Evaluation of existing proteomics and genome-wide RNAi data confirmed the translation of previously un-annotated CDSs and suggested an important role for >200 of those CDSs in parasite survival, especially in the form that is infective to mammals. Overall our data show that translational control plays a prevalent and important role in different parasite life cycle stages of T. brucei.
Plant Physiology | 2014
Stefanie J. Mueller; Daniel Lang; Sebastian N. W. Hoernstein; Erika G.E. Lang; Christian Schuessele; Anton Schmidt; Melanie Fluck; Desirée Leisibach; Christina Niegl; Andreas D. Zimmer; Andreas Schlosser; Ralf Reski
Protein compartmentation in the moss Physcomitrella patens identifies the postendosymbiotic evolution of plastid and mitochondrial functions and pinpoints intercellular and intracellular organellar heterogeneity. Extant eukaryotes are highly compartmentalized and have integrated endosymbionts as organelles, namely mitochondria and plastids in plants. During evolution, organellar proteomes are modified by gene gain and loss, by gene subfunctionalization and neofunctionalization, and by changes in protein targeting. To date, proteomics data for plastids and mitochondria are available for only a few plant model species, and evolutionary analyses of high-throughput data are scarce. We combined quantitative proteomics, cross-species comparative analysis of metabolic pathways, and localizations by fluorescent proteins in the model plant Physcomitrella patens in order to assess evolutionary changes in mitochondrial and plastid proteomes. This study implements data-mining methodology to classify and reliably reconstruct subcellular proteomes, to map metabolic pathways, and to study the effects of postendosymbiotic evolution on organellar pathway partitioning. Our results indicate that, although plant morphologies changed substantially during plant evolution, metabolic integration of organelles is largely conserved, with exceptions in amino acid and carbon metabolism. Retargeting or regulatory subfunctionalization are common in the studied nucleus-encoded gene families of organelle-targeted proteins. Moreover, complementing the proteomic analysis, fluorescent protein fusions revealed novel proteins at organelle interfaces such as plastid stromules (stroma-filled tubules) and highlight microcompartments as well as intercellular and intracellular heterogeneity of mitochondria and plastids. Thus, we establish a comprehensive data set for mitochondrial and plastid proteomes in moss, present a novel multilevel approach to organelle biology in plants, and place our findings into an evolutionary context.
Nucleic Acids Research | 2015
Melanie Fritz; Jens T. Vanselow; Nadja Sauer; Stephanie Lamer; Carina Goos; T. Nicolai Siegel; Ines Subota; Andreas Schlosser; Mark Carrington; Susanne Kramer
RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function.
Molecular & Cellular Proteomics | 2016
Sebastian N. W. Hoernstein; Stefanie J. Mueller; Kathrin Fiedler; Marc Schuelke; Jens T. Vanselow; Christian Schuessele; Daniel Lang; Roland Nitschke; Gabor L. Igloi; Andreas Schlosser; Ralf Reski
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol., DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence. Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Journal of Proteome Research | 2015
Franziska Schmitt; Jens T. Vanselow; Andreas Schlosser; Jörg Kahnt; Wolfgang Rössler; Christian Wegener
Ants show a rich behavioral repertoire and a highly complex organization, which have been attracting behavioral and sociobiological researchers for a long time. The neuronal underpinnings of ant behavior and social organization are, however, much less understood. Neuropeptides are key signals that orchestrate animal behavior and physiology, and it is thus feasible to assume that they play an important role also for the social constitution of ants. Despite the availability of different ant genomes and in silico prediction of ant neuropeptides, a comprehensive biochemical survey of the neuropeptidergic communication possibilities of ants is missing. We therefore combined different mass spectrometric methods to characterize the neuropeptidome of the adult carpenter ant Camponotus floridanus. We also characterized the local neuropeptide complement in different parts of the nervous and neuroendocrine system, including the antennal and optic lobes. Our analysis identifies 39 neuropeptides encoded by different prepropeptide genes, and in silico predicts new prepropeptide genes encoding CAPA peptides, CNMamide as well as homologues of the honey bee IDLSRFYGHFNT- and ITGQGNRIF-containing peptides. Our data provides basic information about the identity and localization of neuropeptides that is required to anatomically and functionally address the role and significance of neuropeptides in ant behavior and physiology.
The EMBO Journal | 2017
Francesca R Dejure; Nadine Royla; Steffi Herold; Jacqueline Kalb; Susanne Walz; Carsten P Ade; Guido Mastrobuoni; Jens T. Vanselow; Andreas Schlosser; Elmar Wolf; Stefan Kempa; Martin Eilers
Deregulated expression of MYC enhances glutamine utilization and renders cell survival dependent on glutamine, inducing “glutamine addiction”. Surprisingly, colon cancer cells that express high levels of MYC due to WNT pathway mutations are not glutamine‐addicted but undergo a reversible cell cycle arrest upon glutamine deprivation. We show here that glutamine deprivation suppresses translation of endogenous MYC via the 3′‐UTR of the MYC mRNA, enabling escape from apoptosis. This regulation is mediated by glutamine‐dependent changes in adenosine‐nucleotide levels. Glutamine deprivation causes a global reduction in promoter association of RNA polymerase II (RNAPII) and slows transcriptional elongation. While activation of MYC restores binding of MYC and RNAPII function on most promoters, restoration of elongation is imperfect and activation of MYC in the absence of glutamine causes stalling of RNAPII on multiple genes, correlating with R‐loop formation. Stalling of RNAPII and R‐loop formation can cause DNA damage, arguing that the MYC 3′‐UTR is critical for maintaining genome stability when ribonucleotide levels are low.
Oncotarget | 2016
Anja E. Eisenhardt; Adrian Sprenger; Michael Röring; Ricarda Herr; Florian Weinberg; Martin Köhler; Sandra Braun; Joachim H. C. Orth; Britta Diedrich; Ulrike Lanner; Natalja Tscherwinski; Simon Tscherwinski; Simon Schuster; Nicolas Dumaz; Enrico Schmidt; Ralf Baumeister; Andreas Schlosser; Jörn Dengjel; Tilman Brummer
B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase.
Journal of Cell Science | 2016
Christine Hofstetter; Justyna M. Kampka; Sascha Huppertz; Heike Weber; Andreas Schlosser; Albrecht M. Müller; Matthias Becker
ABSTRACT Pluripotent embryonic stem cells (ESCs) are characterised by their capacity to self-renew indefinitely while maintaining the potential to differentiate into all cell types of an adult organism. Both the undifferentiated and differentiated states are defined by specific gene expression programs that are regulated at the chromatin level. Here, we have analysed the contribution of the H3K27me2- and H3K27me23-specific demethylases KDM6A and KDM6B to murine ESC differentiation by employing the GSK-J4 inhibitor, which is specific for KDM6 proteins, and by targeted gene knockout (KO) and knockdown. We observe that inhibition of the H3K27 demethylase activity induces DNA damage along with activation of the DNA damage response (DDR) and cell death in differentiating but not in undifferentiated ESCs. Laser microirradiation experiments revealed that the H3K27me3 mark, but not the KDM6B protein, colocalise with γH2AX-positive sites of DNA damage in differentiating ESCs. Lack of H3K27me3 attenuates the GSK-J4-induced DDR in differentiating Eed-KO ESCs. Collectively, our findings indicate that differentiating ESCs depend on KDM6 and that the H3K27me3 demethylase activity is crucially involved in DDR and survival of differentiating ESCs. Summary: KDM6-specific H3K27me3 demethylase activity is crucially involved in the DNA damage response and survival of differentiating ESCs.
International Journal of Cancer | 2016
David Schrama; Sonja Hesbacher; Sabrina Angermeyer; Andreas Schlosser; Sebastian Haferkamp; Annemarie Aue; Christian Adam; Alexandra Weber; Marc Schmidt; Roland Houben
Merkel cell polyomavirus (MCPyV) is regarded as a major causal factor for Merkel cell carcinoma (MCC). Indeed, tumor cell growth of MCPyV‐positive MCC cells is dependent on the expression of a truncated viral Large T antigen (LT) with an intact retinoblastoma protein (RB)‐binding site. Here we determined the phosphorylation pattern of a truncated MCPyV‐LT characteristically for MCC by mass spectrometry revealing MCPyV‐LT as multi‐phospho‐protein phosphorylated at several serine and threonine residues. Remarkably, disruption of most of these phosphorylation sites did not affect its ability to rescue knockdown of endogenous T antigens in MCC cells indicating that phosphorylation of the respective amino acids is not essential for the growth promoting function of MCPyV‐LT. However, alteration of serine 220 to alanine completely abolished the ability of MCPyV‐LT to support proliferation of MCC cells. Conversely, mimicking the phosphorylated state by mutation of serine 220 to glutamic acid resulted in a fully functional LT. Moreover, MCPyV‐LTS220A demonstrated reduced binding to RB in co‐immunoprecipitation experiments as well as weaker induction of RB target genes in MCC cells. In conclusion, we provide evidence that phosphorylation of serine 220 is required for efficient RB inactivation in MCC and may therefore be a potential target for future therapeutic approaches.