Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Dunand-Sauthier is active.

Publication


Featured researches published by Isabelle Dunand-Sauthier.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells

Maurizio Ceppi; Patrícia Pereira; Isabelle Dunand-Sauthier; Emmanuèle Barras; Walter Reith; Manuel A. S. Santos; Philippe Pierre

In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control immunity. Here, we show that in response to Lipopolysaccharides (LPS), several microRNAs (miRNAs) are regulated in human monocyte-derived dendritic cells. Among these miRNAs, miR-155 is highly up-regulated during maturation. Using LNA silencing combined to microarray technology, we have identified the Toll-like receptor/interleukin-1 (TLR/IL-1) inflammatory pathway as a general target of miR-155. We further demonstrate that miR-155 directly controls the level of TAB2, an important signal transduction molecule. Our observations suggest, therefore, that in mature human DCs, miR-155 is part of a negative feedback loop, which down-modulates inflammatory cytokine production in response to microbial stimuli.


The EMBO Journal | 2009

Coordination of dual incision and repair synthesis in human nucleotide excision repair

Lidija Staresincic; Adebanke F. Fagbemi; Jacqueline H. Enzlin; Audrey M. Gourdin; Nils Wijgers; Isabelle Dunand-Sauthier; Giuseppina Giglia-Mari; Stuart G. Clarkson; Wim Vermeulen; Orlando D. Schärer

Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.


Molecular and Cellular Biology | 2004

Definition of a Short Region of XPG Necessary for TFIIH Interaction and Stable Recruitment to Sites of UV Damage

Fabrizio Thorel; Angelos Constantinou; Isabelle Dunand-Sauthier; Thierry Nouspikel; Philippe Lalle; Anja Raams; Nicolaas G. J. Jaspers; Wim Vermeulen; Mahmud K.K. Shivji; Richard D. Wood; Stuart G. Clarkson

ABSTRACT XPG is the human endonuclease that cuts 3′ to DNA lesions during nucleotide excision repair. Missense mutations in XPG can lead to xeroderma pigmentosum (XP), whereas truncated or unstable XPG proteins cause Cockayne syndrome (CS), normally yielding life spans of <7 years. One XP-G individual who had advanced XP/CS symptoms at 28 years has been identified. The genetic, biochemical, and cellular defects in this remarkable case provide insight into the onset of XP and CS, and they reveal a previously unrecognized property of XPG. Both of this individuals XPG alleles produce a severely truncated protein, but an infrequent alternative splice generates an XPG protein lacking seven internal amino acids, which can account for his very slight cellular UV resistance. Deletion of XPG amino acids 225 to 231 does not abolish structure-specific endonuclease activity. Instead, this region is essential for interaction with TFIIH and for the stable recruitment of XPG to sites of local UV damage after the prior recruitment of TFIIH. These results define a new functional domain of XPG, and they demonstrate that recruitment of DNA repair proteins to sites of damage does not necessarily lead to productive repair reactions. This observation has potential implications that extend beyond nucleotide excision repair.


Blood | 2011

Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow

Thomas Matthes; Isabelle Dunand-Sauthier; Marie-Laure Santiago-Raber; Karl-Heinz Krause; Olivier Donzé; Jakob Passweg; Thomas Alexander Mckee; Bertrand Huard

The bone marrow (BM) is an organ extremely efficient in mediating long-term survival of plasma cells (PCs), ensuring an immune humoral memory. This implies that the BM must provide continuously key PC survival factors. Our results show that the BM is an organ constitutively rich in a proliferation-inducing ligand (APRIL), a member of the tumor necrosis factor superfamily implicated in PC survival. APRIL production is induced during hematopoiesis in myeloid cells by non-lineage-committing factors such as stem cell factor, thrombopoietin, IL-3, and FMS-like tyrosine kinase 3 ligand. Notably, APRIL production, both in the human and mouse systems, peaks in myeloid precursor cells, before dropping in fully mature granulocytes. Myeloid cells secrete APRIL that circulates freely in BM plasma to act on PCs, usually at distance from APRIL production sites. Selective APRIL in vivo antagonism and in vitro coculture experiments further demonstrated that myeloid precursor cells mediates PC survival in an APRIL-dependent manner Thus, APRIL production by myeloid precursor cells shows that the 2 main BM functions, hematopoiesis and long-term PC survival, are linked. Such constitutive and high APRIL production may explain why BM mediates long-term PC survival.


Nucleic Acids Research | 2007

Transcription-coupled deposition of histone modifications during MHC class II gene activation.

Natalia Rybtsova; Elisa Leimgruber; Queralt Seguín-Estévez; Isabelle Dunand-Sauthier; Michal Krawczyk; Walter Reith

Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5′ end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.


Journal of Immunology | 2009

Selective Up-Regulation of Intact, but Not Defective env RNAs of Endogenous Modified Polytropic Retrovirus by the Sgp3 Locus of Lupus-Prone Mice

Lucie Clementine Baudino; Marie-Laure Santiago-Raber; Naoki Morito; Isabelle Dunand-Sauthier; Bernard J Morley; Leonard H. Evans; Shozo Izui

Endogenous retroviruses are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Because four different classes of endogenous retroviruses, i.e., ecotropic, xenotropic, polytropic, or modified polytropic (mPT), are expressed in mice, we investigated the possibility that a particular class of endogenous retroviruses is associated with the development of murine SLE. We observed >15-fold increased expression of mPT env (envelope) RNA in livers of all four lupus-prone mice, as compared with those of nine nonautoimmune strains of mice. This was not the case for the three other classes of retroviruses. Furthermore, we found that in addition to intact mPT transcripts, many strains of mice expressed two defective mPT env transcripts which carry a deletion in the env sequence of the 3′ portion of the gp70 surface protein and the 5′ portion of the p15E transmembrane protein, respectively. Remarkably, in contrast to nonautoimmune strains of mice, all four lupus-prone mice expressed abundant levels of intact mPT env transcripts, but only low or nondetectable levels of the mutant env transcripts. The Sgp3 (serum gp70 production 3) locus derived from lupus-prone mice was responsible for the selective up-regulation of the intact mPT env RNA. Finally, we observed that single-stranded RNA-specific TLR7 played a critical role in the production of anti-gp70 autoantibodies. These data suggest that lupus-prone mice may possess a unique genetic mechanism responsible for the expression of mPT retroviruses, which could act as a triggering factor through activating TLR7 for the development of autoimmune responses in mice predisposed to SLE.


Nucleic Acids Research | 2006

Expression of RAB4B, a protein governing endocytic recycling, is co-regulated with MHC class II genes

Michal Krawczyk; Elisa Leimgruber; Queralt Seguín-Estévez; Isabelle Dunand-Sauthier; Emmanuèle Barras; Walter Reith

The small GTPase RAB4 regulates endocytic recycling, a process that contributes to Major Histocompatibility Complex (MHC)-mediated antigen presentation by specialized antigen presenting cells (APC) of the immune system. The gene encoding the RAB4B isoform of RAB4 was singled out by two complementary genome-wide screens. One of these consisted of a computer scan to identify genes containing characteristic MHC class II-related regulatory sequences. The second was the use of chromatin immunoprecipitation coupled to microarrays (ChIP-on-chip) to identify novel targets of a transcriptional co-activator called the MHC class II transactivator (CIITA). We show that the RAB4B gene is regulated by a typical MHC class II-like enhancer that is controlled directly by both CIITA and the multiprotein transcription factor complex known as the MHC class II enhanceosome. RAB4B expression is thus activated by the same regulatory machinery that is known to be essential for the expression of MHC class II genes. This molecular link between the transcriptional activation of RAB4B and MHC class II genes implies that APC boost their antigen presentation capacity by increasing RAB4-mediated endocytic recycling.


Journal of Immunology | 2014

Hepatocyte Growth Factor Limits Autoimmune Neuroinflammation via Glucocorticoid-Induced Leucine Zipper Expression in Dendritic Cells

Mahdia Benkhoucha; Nicolas Molnarfi; Isabelle Dunand-Sauthier; Doron Merkler; Gregory Schneiter; Stefano Bruscoli; Carlo Riccardi; Yasuhiko Tabata; Hiroshi Funakoshi; Toshikazu Nakamura; Walter Reith; Marie-Laure Santiago-Raber; Patrice H. Lalive

Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell–mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference–directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene–deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions.


Journal of Immunology | 2014

Repression of Arginase-2 Expression in Dendritic Cells by MicroRNA-155 Is Critical for Promoting T Cell Proliferation

Isabelle Dunand-Sauthier; Magali Irla; Stephanie Carnesecchi; Queralt Seguín-Estévez; Charles E. Vejnar; Evgeny M. Zdobnov; Marie-Laure Santiago-Raber; Walter Reith

Arginine, a semiessential amino acid implicated in diverse cellular processes, is a substrate for two arginases—Arg1 and Arg2—having different expression patterns and functions. Although appropriately regulated Arg1 expression is critical for immune responses, this has not been documented for Arg2. We show that Arg2 is the dominant enzyme in dendritic cells (DCs) and is repressed by microRNA-155 (miR155) during their maturation. miR155 is known to be strongly induced in various mouse and human DC subsets in response to diverse maturation signals, and miR155-deficient DCs exhibit an impaired ability to induce Ag-specific T cell responses. By means of expression profiling studies, we identified Arg2 mRNA as a novel miR155 target in mouse DCs. Abnormally elevated levels of Arg2 expression and activity were observed in activated miR155-deficient DCs. Conversely, overexpression of miR155 inhibited Arg2 expression. Bioinformatic and functional analyses confirmed that Arg2 mRNA is a direct target of miR155. Finally, in vitro and in vivo functional assays using DCs exhibiting deregulated Arg2 expression indicated that Arg2-mediated arginine depletion in the extracellular milieu impairs T cell proliferation. These results indicate that miR155-induced repression of Arg2 expression is critical for the ability of DCs to drive T cell activation by controlling arginine availability in the extracellular environment.


Journal of Autoimmunity | 2010

TLR-mediated up-regulation of serum retroviral gp70 is controlled by the Sgp loci of lupus-prone mice

Lucie Clementine Baudino; Isabelle Dunand-Sauthier; Leonard H. Evans; Shozo Izui

The endogenous retroviral envelope glycoprotein, gp70, implicated in murine systemic lupus erythematosus (SLE), has been considered to be a product of xenotropic, polytropic (PT) and modified PT (mPT) endogenous retroviruses. It is secreted by hepatocytes like an acute phase protein, but its response is under a genetic control. Given critical roles of TLR7 and TLR9 in the pathogenesis of SLE, we assessed their contribution to the acute phase expression of serum gp70, and defined a pivotal role of the Sgp3 (serum gp70 production 3) and Sgp4 loci in this response. Our results demonstrated that serum levels of gp70 were up-regulated in lupus-prone NZB mice injected with TLR7 or TLR9 agonist at levels comparable to those induced by injection of IL-1, IL-6 or TNF. In addition, studies of C57BL/6 Sgp3 and/or Sgp4 congenic mice defined the major roles of these two loci in up-regulated production of serum gp70 during acute phase responses. Finally, the analysis of Sgp3 congenic mice strongly suggests the presence of at least two distinct genetic factors in the Sgp3 interval, one of which controlled the basal-level expression of xenotropic, PT and mPT gp70 and the other which controlled the up-regulated production of xenotropic and mPT gp70 during acute phase responses. Our results uncovered an additional pathogenic role of TLR7 and TLR9 in murine lupus nephritis by promoting the expression of nephritogenic gp70 autoantigen. Furthermore, they revealed the involvement of multiple regulatory genes for the expression of gp70 autoantigen under steady-state and inflammatory conditions in lupus-prone mice.

Collaboration


Dive into the Isabelle Dunand-Sauthier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. Vejnar

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evgeny M. Zdobnov

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge