Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Queralt Seguín-Estévez is active.

Publication


Featured researches published by Queralt Seguín-Estévez.


Journal of Immunology | 2012

NLRC5 Deficiency Selectively Impairs MHC Class I- Dependent Lymphocyte Killing by Cytotoxic T Cells

Francesco Staehli; Kristina Ludigs; Leonhard X. Heinz; Queralt Seguín-Estévez; Isabel Ferrero; Marion Braun; Kate Schroder; Manuele Rebsamen; Aubry Tardivel; Chantal Mattmann; H. Robson MacDonald; Pedro Romero; Walter Reith; Greta Guarda; Jürg Tschopp

Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5Δ/Δ). In this article we show that these animals exhibit slightly decreased CD8+ T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5Δ/Δ macrophages efficiently primed CD8+ T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5Δ/Δ lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8+ T cell-mediated elimination by downmodulation of MHC I levels—a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.


PLOS Genetics | 2008

Identification of CIITA Regulated Genetic Module Dedicated for Antigen Presentation

Michal Krawczyk; Queralt Seguín-Estévez; Elisa Leimgruber; Peter Sperisen; Christoph D. Schmid; Philipp Bucher; Walter Reith

The class II trans-activator CIITA is a transcriptional co-activator required for the expression of Major Histocompatibility Complex (MHC) genes. Although the latter function is well established, the global target-gene specificity of CIITA had not been defined. We therefore generated a comprehensive list of its target genes by performing genome-wide scans employing four different approaches designed to identify promoters that are occupied by CIITA in two key antigen presenting cells, B cells and dendritic cells. Surprisingly, in addition to MHC genes, only nine new targets were identified and validated by extensive functional and expression analysis. Seven of these genes are known or likely to function in processes contributing to MHC-mediated antigen presentation. The remaining two are of unknown function. CIITA is thus uniquely dedicated for genes implicated in antigen presentation. The finding that CIITA regulates such a highly focused gene expression module sets it apart from all other transcription factors, for which large-scale binding-site mapping has indicated that they exert pleiotropic functions and regulate large numbers of genes.


Nucleic Acids Research | 2007

Transcription-coupled deposition of histone modifications during MHC class II gene activation.

Natalia Rybtsova; Elisa Leimgruber; Queralt Seguín-Estévez; Isabelle Dunand-Sauthier; Michal Krawczyk; Walter Reith

Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5′ end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.


Diabetes | 2010

The Transcription Factor Rfx3 Regulates β-Cell Differentiation, Function, and Glucokinase Expression

Aouatef Ait-Lounis; Claire Bonal; Queralt Seguín-Estévez; Christoph D. Schmid; Philipp Bucher; Pedro Luis Herrera; Bénédicte Durand; Paolo Meda; Walter Reith

OBJECTIVE Pancreatic islets of perinatal mice lacking the transcription factor Rfx3 exhibit a marked reduction in insulin-producing β-cells. The objective of this work was to unravel the cellular and molecular mechanisms underlying this deficiency. RESEARCH DESIGN AND METHODS Immunofluorescence studies and quantitative RT-PCR experiments were used to study the emergence of insulin-positive cells, the expression of transcription factors implicated in the differentiation of β-cells from endocrine progenitors, and the expression of mature β-cell markers during development in Rfx3−/− and pancreas-specific Rfx3-knockout mice. RNA interference experiments were performed to document the consequences of downregulating Rfx3 expression in Min6 β-cells. Quantitative chromatin immunoprecipitation (ChIP), ChIP sequencing, and bandshift experiments were used to identify Rfx3 target genes. RESULTS Reduced development of insulin-positive cells in Rfx3−/− mice was not due to deficiencies in endocrine progenitors or β-lineage specification, but reflected the accumulation of insulin-positive β-cell precursors and defective β-cells exhibiting reduced insulin, Glut-2, and Gck expression. Similar incompletely differentiated β-cells developed in pancreas-specific Rfx3-deficient embryos. Defective β-cells lacking Glut-2 and Gck expression dominate in Rfx3-deficent adults, leading to glucose intolerance. Attenuated Glut-2 and glucokinase expression, and impaired glucose-stimulated insulin secretion, were also induced by RNA interference–mediated inhibition of Rfx3 expression in Min6 cells. Finally, Rfx3 was found to bind in Min6 cells and human islets to two well-known regulatory sequences, Pal-1 and Pal-2, in the neuroendocrine promoter of the glucokinase gene. CONCLUSIONS Our results show that Rfx3 is required for the differentiation and function of mature β-cells and regulates the β-cell promoter of the glucokinase gene.


PLOS Genetics | 2015

NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module.

Kristina Ludigs; Queralt Seguín-Estévez; Sylvain Lemeille; Isabel Ferrero; Giorgia Rota; Sonia T. Chelbi; Chantal Mattmann; H. Robson MacDonald; Walter Reith; Greta Guarda

MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding “enhanceosome” complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5’s target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5−/− cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5−/−CIIta−/− mice. These paradoxical findings were resolved by using a “de novo” motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.


Nucleic Acids Research | 2006

Expression of RAB4B, a protein governing endocytic recycling, is co-regulated with MHC class II genes

Michal Krawczyk; Elisa Leimgruber; Queralt Seguín-Estévez; Isabelle Dunand-Sauthier; Emmanuèle Barras; Walter Reith

The small GTPase RAB4 regulates endocytic recycling, a process that contributes to Major Histocompatibility Complex (MHC)-mediated antigen presentation by specialized antigen presenting cells (APC) of the immune system. The gene encoding the RAB4B isoform of RAB4 was singled out by two complementary genome-wide screens. One of these consisted of a computer scan to identify genes containing characteristic MHC class II-related regulatory sequences. The second was the use of chromatin immunoprecipitation coupled to microarrays (ChIP-on-chip) to identify novel targets of a transcriptional co-activator called the MHC class II transactivator (CIITA). We show that the RAB4B gene is regulated by a typical MHC class II-like enhancer that is controlled directly by both CIITA and the multiprotein transcription factor complex known as the MHC class II enhanceosome. RAB4B expression is thus activated by the same regulatory machinery that is known to be essential for the expression of MHC class II genes. This molecular link between the transcriptional activation of RAB4B and MHC class II genes implies that APC boost their antigen presentation capacity by increasing RAB4-mediated endocytic recycling.


Journal of Immunology | 2014

Repression of Arginase-2 Expression in Dendritic Cells by MicroRNA-155 Is Critical for Promoting T Cell Proliferation

Isabelle Dunand-Sauthier; Magali Irla; Stephanie Carnesecchi; Queralt Seguín-Estévez; Charles E. Vejnar; Evgeny M. Zdobnov; Marie-Laure Santiago-Raber; Walter Reith

Arginine, a semiessential amino acid implicated in diverse cellular processes, is a substrate for two arginases—Arg1 and Arg2—having different expression patterns and functions. Although appropriately regulated Arg1 expression is critical for immune responses, this has not been documented for Arg2. We show that Arg2 is the dominant enzyme in dendritic cells (DCs) and is repressed by microRNA-155 (miR155) during their maturation. miR155 is known to be strongly induced in various mouse and human DC subsets in response to diverse maturation signals, and miR155-deficient DCs exhibit an impaired ability to induce Ag-specific T cell responses. By means of expression profiling studies, we identified Arg2 mRNA as a novel miR155 target in mouse DCs. Abnormally elevated levels of Arg2 expression and activity were observed in activated miR155-deficient DCs. Conversely, overexpression of miR155 inhibited Arg2 expression. Bioinformatic and functional analyses confirmed that Arg2 mRNA is a direct target of miR155. Finally, in vitro and in vivo functional assays using DCs exhibiting deregulated Arg2 expression indicated that Arg2-mediated arginine depletion in the extracellular milieu impairs T cell proliferation. These results indicate that miR155-induced repression of Arg2 expression is critical for the ability of DCs to drive T cell activation by controlling arginine availability in the extracellular environment.


PLOS Genetics | 2015

RFX2 Is a Major Transcriptional Regulator of Spermiogenesis

W. Stephen Kistler; Dominique Baas; Sylvain Lemeille; Marie Paschaki; Queralt Seguín-Estévez; Emmanuèle Barras; Wenli Ma; Jean-Luc Duteyrat; Laurette Morlé; Bénédicte Durand; Walter Reith

Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis.


Nucleic Acids Research | 2009

Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site

Elisa Leimgruber; Queralt Seguín-Estévez; Isabelle Dunand-Sauthier; Natalia Rybtsova; Christoph D. Schmid; Giovanna Ambrosini; Philipp Bucher; Walter Reith

Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence.


Journal of Immunology | 2009

The Transcription Factor RFX Protects MHC Class II Genes against Epigenetic Silencing by DNA Methylation

Queralt Seguín-Estévez; Raffaele De Palma; Michal Krawczyk; Elisa Leimgruber; Jean Villard; Capucine Picard; Augusto Tagliamacco; Gianfranco Abbate; Jack Gorski; Arcangelo Nocera; Walter Reith

Classical and nonclassical MHC class II (MHCII) genes are coregulated by the transcription factor RFX (regulatory factor X) and the transcriptional coactivator CIITA. RFX coordinates the assembly of a multiprotein “enhanceosome” complex on MHCII promoters. This enhanceosome serves as a docking site for the binding of CIITA. Whereas the role of the enhanceosome in recruiting CIITA is well established, little is known about its CIITA-independent functions. A novel role of the enhanceosome was revealed by the analysis of HLA-DOA expression in human MHCII-negative B cell lines lacking RFX or CIITA. HLA-DOA was found to be reactivated by complementation of CIITA-deficient but not RFX-deficient B cells. Silencing of HLA-DOA was associated with DNA methylation at its promoter, and was relieved by the demethylating agent 5-azacytidine. Surprisingly, DNA methylation was also established at the HLA-DRA and HLA-DQB loci in RFX-deficient cells. This was a direct consequence of the absence of RFX, as it could be reversed by restoring RFX function. DNA methylation at the HLA-DOA, HLA-DRA, and HLA-DQB promoters was observed in RFX-deficient B cells and fibroblasts, but not in CIITA-deficient B cells and fibroblasts, or in wild-type fibroblasts, which lack CIITA expression. These results indicate that RFX and/or enhanceosome assembly plays a key CIITA-independent role in protecting MHCII promoters against DNA methylation. This function is likely to be crucial for retaining MHCII genes in an open chromatin configuration permissive for activation in MHCII-negative cells, such as the precursors of APC and nonprofessional APC before induction with IFN-γ.

Collaboration


Dive into the Queralt Seguín-Estévez's collaboration.

Top Co-Authors

Avatar

Walter Reith

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. Vejnar

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evgeny M. Zdobnov

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge