Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Dupanloup is active.

Publication


Featured researches published by Isabelle Dupanloup.


Molecular Ecology | 2002

A simulated annealing approach to define the genetic structure of populations

Isabelle Dupanloup; Stefan W. Schneider; Laurent Excoffier

We present a new approach for defining groups of populations that are geographically homogeneous and maximally differentiated from each other. As a by‐product, it also leads to the identification of genetic barriers between these groups. The method is based on a simulated annealing procedure that aims to maximize the proportion of total genetic variance due to differences between groups of populations (spatial analysis of molecular variance; samova). Monte Carlo simulations were used to study the performance of our approach and, for comparison, the behaviour of the Monmonier algorithm, a procedure commonly used to identify zones of sharp genetic changes in a geographical area. Simulations showed that the samova algorithm indeed finds maximally differentiated groups, which do not always correspond to the simulated group structure in the presence of isolation by distance, especially when data from a single locus are available. In this case, the Monmonier algorithm seems slightly better at finding predefined genetic barriers, but can often lead to the definition of groups of populations not differentiated genetically. The samova algorithm was then applied to a set of European roe deer populations examined for their mitochondrial DNA (mtDNA) HVRI diversity. The inferred genetic structure seemed to confirm the hypothesis that some Italian populations were recently reintroduced from a Balkanic stock, as well as the differentiation of groups of populations possibly due to the postglacial recolonization of Europe or the action of a specific barrier to gene flow.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans.

David Caramelli; Carles Lalueza-Fox; Cristiano Vernesi; Martina Lari; Antonella Casoli; Francesco Mallegni; Brunetto Chiarelli; Isabelle Dupanloup; Jaume Bertranpetit; Guido Barbujani; Giorgio Bertorelle

During the late Pleistocene, early anatomically modern humans coexisted in Europe with the anatomically archaic Neandertals for some thousand years. Under the recent variants of the multiregional model of human evolution, modern and archaic forms were different but related populations within a single evolving species, and both have contributed to the gene pool of current humans. Conversely, the Out-of-Africa model considers the transition between Neandertals and anatomically modern humans as the result of a demographic replacement, and hence it predicts a genetic discontinuity between them. Following the most stringent current standards for validation of ancient DNA sequences, we typed the mtDNA hypervariable region I of two anatomically modern Homo sapiens sapiens individuals of the Cro-Magnon type dated at about 23 and 25 thousand years ago. Here we show that the mtDNAs of these individuals fall well within the range of variation of todays humans, but differ sharply from the available sequences of the chronologically closer Neandertals. This discontinuity is difficult to reconcile with the hypothesis that both Neandertals and early anatomically modern humans contributed to the current European gene pool.


Annals of Human Genetics | 2004

Mitochondrial DNA and Y-chromosome variation in the caucasus.

Ivan Nasidze; Edmund Y. S. Ling; Dominique Quinque; Isabelle Dupanloup; Richard Cordaux; Sergey Rychkov; Oksana Naumova; O. V. Zhukova; N. Sarraf-Zadegan; G. A. Naderi; S. Asgary; Semra Sardas; D. D. Farhud; Tamara Sarkisian; C. Asadov; A. Kerimov; Mark Stoneking

We have analyzed mtDNA HVI sequences and Y chromosome haplogroups based on 11 binary markers in 371 individuals, from 11 populations in the Caucasus and the neighbouring countries of Turkey and Iran. Y chromosome haplogroup diversity in the Caucasus was almost as high as in Central Asia and the Near East, and significantly higher than in Europe. More than 27% of the variance in Y‐haplogroups can be attributed to differences between populations, whereas mtDNA showed much lower heterogeneity between populations (less then 5%), suggesting a strong influence of patrilocal social structure. Several groups from the highland region of the Caucasus exhibited low diversity and high differentiation for either or both genetic systems, reflecting enhanced genetic drift in these small, isolated populations. Overall, the Caucasus groups showed greater similarity with West Asian than with European groups for both genetic systems, although this similarity was much more pronounced for the Y chromosome than for mtDNA, suggesting that male‐mediated migrations from West Asia have influenced the genetic structure of Caucasus populations.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Prehistoric genomes reveal the genetic foundation and cost of horse domestication.

Mikkel Schubert; Hákon Jónsson; Dan Chang; Clio Der Sarkissian; Luca Ermini; Aurélien Ginolhac; Anders Albrechtsen; Isabelle Dupanloup; Adrien Foucal; Bent Petersen; Matteo Fumagalli; Maanasa Raghavan; Andaine Seguin-Orlando; Thorfinn Sand Korneliussen; Amhed M. V. Velazquez; Jesper Stenderup; Cindi A. Hoover; Carl-Johan Rubin; Ahmed H. Alfarhan; Saleh A. Alquraishi; Khaled A. S. Al-Rasheid; David E. MacHugh; Ted Kalbfleisch; James N. MacLeod; Edward M. Rubin; Thomas Sicheritz-Pontén; Leif Andersson; Michael Hofreiter; Tomas Marques-Bonet; M. Thomas P. Gilbert

Significance The domestication of the horse revolutionized warfare, trade, and the exchange of people and ideas. This at least 5,500-y-long process, which ultimately transformed wild horses into the hundreds of breeds living today, is difficult to reconstruct from archeological data and modern genetics alone. We therefore sequenced two complete horse genomes, predating domestication by thousands of years, to characterize the genetic footprint of domestication. These ancient genomes reveal predomestic population structure and a significant fraction of genetic variation shared with the domestic breeds but absent from Przewalski’s horses. We find positive selection on genes involved in various aspects of locomotion, physiology, and cognition. Finally, we show that modern horse genomes contain an excess of deleterious mutations, likely representing the genetic cost of domestication. The domestication of the horse ∼5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski’s horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the “cost of domestication” hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.


Molecular Ecology | 2013

On the accumulation of deleterious mutations during range expansions

Stephan Peischl; Isabelle Dupanloup; Mark Kirkpatrick; Laurent Excoffier

We investigate the effect of spatial range expansions on the evolution of fitness when beneficial and deleterious mutations cosegregate. We perform individual-based simulations of 1D and 2D range expansions and complement them with analytical approximations for the evolution of mean fitness at the edge of the expansion. We find that deleterious mutations accumulate steadily on the wave front during range expansions, thus creating an expansion load. Reduced fitness due to the expansion load is not restricted to the wave front, but occurs over a large proportion of newly colonized habitats. The expansion load can persist and represent a major fraction of the total mutation load for thousands of generations after the expansion. The phenomenon of expansion load may explain growing evidence that populations that have recently expanded, including humans, show an excess of deleterious mutations. To test the predictions of our model, we analyse functional genetic diversity in humans and find patterns that are consistent with our model.


Nature | 2016

A genomic history of Aboriginal Australia

Anna-Sapfo Malaspinas; Michael C. Westaway; Craig Muller; Vitor C. Sousa; Oscar Lao; Isabel Alves; Anders Bergström; Georgios Athanasiadis; Jade Y. Cheng; Jacob E. Crawford; Tim Hermanus Heupink; Enrico Macholdt; Stephan Peischl; Simon Rasmussen; Stephan Schiffels; Sankar Subramanian; Joanne L. Wright; Anders Albrechtsen; Chiara Barbieri; Isabelle Dupanloup; Anders Eriksson; Ashot Margaryan; Ida Moltke; Irina Pugach; Thorfinn Sand Korneliussen; Ivan P. Levkivskyi; J. Víctor Moreno-Mayar; Shengyu Ni; Fernando Racimo; Martin Sikora

The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama–Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25–40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10–32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama–Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51–72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.


Journal of Molecular Evolution | 2003

A recent shift from polygyny to monogamy in humans is suggested by the analysis of worldwide Y-chromosome diversity.

Isabelle Dupanloup; Luísa Pereira; Giorgio Bertorelle; Francesc Calafell; Maria João Prata; António Amorim; Guido Barbujani

Molecular genetic data contain information on the history of populations. Evidence of prehistoric demographic expansions has been detected in the mitochondrial diversity of most human populations and in a Y-chromosome STR analysis, but not in a previous study of 11 Y-chromosome SNPs in Europeans. In this paper, we show that mismatch distributions and tests of mutation/drift equilibrium based on up to 166 Y-chromosome SNPs, in 46 samples from all continents, also fail to support an increase of the male effective population size. Computer simulations show that the low nuclear versus mitochondrial mutation rates cannot explain these results. However, ascertainment bias, i.e., when only highly variable SNP sites are typed, may be concealing any Y SNPs evidence for a recent, but not an ancient, increase in male effective population sizes. The results of our SNP analyses can be reconciled with the expansion of male effective population sizes inferred from STR loci, and with mitochondrial evidence, by admitting that humans were essentially polygynous during much of their history. As a consequence, until recently only a few men may have contributed a large fraction of the Y-chromosome pool at every generation. The number of breeding males may have increased, and the variance of their reproductive success may have decreased, through a recent shift from polygyny to monogamy, which is supported by ethnological data and possibly accompanied the shift from mobile to sedentary communities.


Molecular Ecology | 2001

Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon

Leonardo Congiu; Isabelle Dupanloup; Tomaso Patarnello; F. Fontana; R. Rossi; G Arlati; Lorenzo Zane

The identification of interspecific hybrids represents an important issue for conservation biology and trade controls. In Italy, the commercial demand for sturgeon is rapidly increasing and interspecific hybrids represent a relevant part of aquacultural production. In this study we tested the suitability of the amplified fragment length polymorphism (AFLP) technique for sturgeon hybrid detection. Multilocus AFLP profiles were analysed by cluster analysis and assignment tests based on observed and simulated samples. Our results show that this approach can easily identify sturgeon hybrids, encouraging its application not only in sturgeon but also in other systematic groups.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Distance from sub-Saharan Africa predicts mutational load in diverse human genomes

Brenna M. Henn; Laura R. Botigué; Stephan Peischl; Isabelle Dupanloup; Mikhail Lipatov; Brian K. Maples; Alicia R. Martin; Shaila Musharoff; Howard M. Cann; Michael Snyder; Laurent Excoffier; Jeffrey M. Kidd; Carlos Bustamante

Significance Human genomes carry hundreds of mutations that are predicted to be deleterious in some environments, potentially affecting the health or fitness of an individual. We characterize the distribution of deleterious mutations among diverse human populations, modeled under different selection coefficients and dominance parameters. Using a new dataset of diverse human genomes from seven different populations, we use spatially explicit simulations to reveal that classes of deleterious alleles have very different patterns across populations, reflecting the interaction between genetic drift and purifying selection. We show that there is a strong signal of purifying selection at conserved genomic positions within African populations, but most predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. The Out-of-Africa (OOA) dispersal ∼50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.


European Journal of Human Genetics | 2004

Molecular diversity at the CYP2D6 locus in the Mediterranean region

Silvia Fuselli; Isabelle Dupanloup; Elena Frigato; Fulvio Cruciani; Rosaria Scozzari; Pedro Moral; Johanna Sistonen; Antti Sajantila; Guido Barbujani

Despite the importance of cytochrome P450 in the metabolism of many drugs, several aspects of molecular variation at one of the main loci coding for it, CYP2D6, have never been analysed so far. Here we show that it is possible to rapidly and efficiently genotype the main European allelic variants at this locus by a SNaPshot method identifying chromosomal rearrangements and nine single-nucleotide polymorphisms. Haplotypes could be reconstructed from data on 494 chromosomes in six populations of the Mediterranean region. High levels of linkage disequilibrium were found within the chromosome region screened, suggesting that CYP2D6 may be part of a genomic recombination block, and hence that, aside from unequal crossingover that led to large chromosomal rearrangements, its haplotype diversity essentially originated through the accumulation of mutations. With the only, albeit statistically insignificant, exception of Syria, haplotype frequencies do not differ among the populations studied, despite the presence among them of three well-known genetic outliers, which could be the result of common selective pressures playing a role in shaping CYP2D6 variation over the area of Europe that we surveyed.

Collaboration


Dive into the Isabelle Dupanloup's collaboration.

Top Co-Authors

Avatar

Laurent Excoffier

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Peischl

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge