Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Scantland is active.

Publication


Featured researches published by Sara Scantland.


Biology of Reproduction | 2016

Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation

Angus D. Macaulay; Isabelle Gilbert; Sara Scantland; Eric Fournier; Fazl Ashkar; Alexandre Bastien; Habib A. Shojaei Saadi; Dominique Gagné; Marc-André Sirard; Edouard W. Khandjian; François J. Richard; Poul Hyttel; Claude Robert

ABSTRACT So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and the gamete. Secreted factors induce cellular responses in the follicular cells, and direct exchange of small molecules from the cumulus cells to the oocyte through gap junctions controls meiotic arrest. Studying the interconnection between the cumulus cells and the oocyte, we previously demonstrated that the somatic cells also contribute transcripts to the gamete. Here, we show that these transcripts can be visualized moving down the transzonal projections (TZPs) to the oocyte, and that a time course analysis revealed progressive RNA accumulation in the TZPs, indicating that RNA transfer occurs before the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocytes polyribosomes, revealed transcripts common to all three fractions, suggesting the use of transferred transcripts for translation. Furthermore, the removal of potential RNA trafficking by stripping the cumulus cells caused a significant reduction in maturation rates, indicating the need for the cumulus cell RNA transfer to the oocyte. These results offer a new perspective to the determinants of oocyte quality and female fertility, as well as provide insight that may eventually be used to improve in vitro maturation conditions.


Molecular Reproduction and Development | 2009

The dynamics of gene products fluctuation during bovine pre-hatching development.

Isabelle Gilbert; Sara Scantland; Eve-Lyne Sylvestre; Catherine Gravel; Isabelle Laflamme; Marc-André Sirard; Claude Robert

Early embryonic development, spanning fertilization to blastocyst hatching, is a very dynamic developmental window that is characterized, especially in large mammals, by a period of transcriptional incompetence that ends during the maternal to embryonic transition (MET). Prior to the MET, the first cell cycles are supported by stored RNA and proteins pools accumulated during oogenesis. Therefore, RNA and protein content are different between developmental stages. It is also known that the stability of the stored mRNA and the mechanisms for translation recruitment are partly controlled by the length of the poly(A) tail. To date, little is known about RNA and protein content fluctuations during the pre‐hatching period. In this report we present measurements of total RNA, mRNA, poly(A) bearing mRNA and protein contents, as well as estimations of the proportions of both mRNA fractions to total RNA contents within these developmental stages. We found that while the ontogenic profiles of the different transcript contents were expected, their amounts were considerably lower than the reported values. Additionally, low 28S rRNA abundance and a tendency for diminishing protein content prior to the MET, suggest a limited potential for ribosomal turnover and translation. We consider the overall fluctuations in RNA and protein contents to be reference points that are essential for downstream interpretation of gene expression data across stages whether it be through candidates or high throughput approaches. Mol. Reprod. Dev. 76: 762–772, 2009.


Biology of Reproduction | 2014

The Adenosine Salvage Pathway as an Alternative to Mitochondrial Production of ATP in Maturing Mammalian Oocytes

Sara Scantland; Irene Tessaro; Carolina H. Macabelli; Angus D. Macaulay; Gaël Cagnone; Eric Fournier; Alberto M. Luciano; Claude Robert

ABSTRACT Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation.


BMC Developmental Biology | 2011

Method to isolate polyribosomal mRNA from scarce samples such as mammalian oocytes and early embryos

Sara Scantland; Jean-Philippe Grenon; Marie-Hélène Desrochers; Marc-André Sirard; Edward W. Khandjian; Claude Robert

BackgroundAlthough the transcriptome of minute quantities of cells can be profiled using nucleic acid amplification techniques, it remains difficult to distinguish between active and stored messenger RNA. Transcript storage occurs at specific stages of gametogenesis and is particularly important in oogenesis as stored maternal mRNA is used to sustain de novo protein synthesis during the early developmental stages until the embryonic genome gets activated. In many cases, stored mRNA can be several times more abundant than mRNA ready for translation. In order to identify active mRNA in bovine oocytes, we sought to develop a method of isolating very small amounts of polyribosome mRNA.ResultsThe proposed method is based on mixing the extracted oocyte cytoplasm with a preparation of polyribosomes obtained from a non-homologous source (Drosophila) and using sucrose density gradient ultracentrifugation to separate the polyribosomes. It involves cross-linking the non-homologous polyribosomes and neutralizing the cross-linking agent. Using this method, we show that certain stages of oocyte maturation coincide with changes in the abundance of polyribosomal mRNA but not total RNA or poly(A). We also show that the abundance of selected sequences matched changes in the corresponding protein levels.ConclusionsWe report here the successful use of a method to profile mRNA present in the polyribosomal fraction obtained from as little as 75 mammalian oocytes. Polyribosomal mRNA fractionation thus provides a new tool for studying gametogenesis and early development with better representation of the underlying physiological status.


Molecular Human Reproduction | 2010

Providing a stable methodological basis for comparing transcript abundance of developing embryos using microarrays.

Isabelle Gilbert; Sara Scantland; Eve-Lyne Sylvestre; Isabelle Dufort; Marc-André Sirard; Claude Robert

High throughput methods deliver large amount of data serving to describe the physiological treatment that is being studied. In the case of microarrays, there would be a clear benefit to integrate the published data sets. However, the numerous methodological discrepancies between microarray platforms make this comparison impossible. This incompatibility is magnified when considering the peculiar context of transcript management in early embryogenesis. The total RNA content is known to profoundly fluctuate during development. In addition, the mRNA population is subjected to poly(A) tail shortening and elongating events, a characteristic of stored and recruited messengers. These intrinsic factors need to be considered when interpreting any transcript abundance profiles during early development. As a consequence, many methodological details affect microarray platform performances and prevent compatibility. In an effort to maximize our microarray platform performance, we determined the various sources of variation for every one of the main steps leading to the production of microarray data. The five main steps involved in sample preparation were evaluated, as well as conditions for post-hybridization validation by qRT-PCR. These determinations were essential for the implementation of standardized procedures for our Research Network but they can also provide insight into the compatibility issues that the microarray community is now facing.


Nucleic Acids Research | 2009

Real-time monitoring of aRNA production during T7 amplification to prevent the loss of sample representation during microarray hybridization sample preparation

Isabelle Gilbert; Sara Scantland; Isabelle Dufort; Olga Gordynska; Aurélie Labbe; Marc-André Sirard; Claude Robert

Gene expression analysis performed through comparative abundance of transcripts is facing a new challenge with the increasing need to compare samples of known cell number, such as early embryos or laser microbiopsies, where the RNA contents of identical cellular inputs can by nature be variable. When working with scarce tissues, the success of microarray profiling largely depends on the efficiency of the amplification step as determined by its ability to preserve the relative abundance of transcripts in the resulting amplified sample. Maintaining this initial relative abundance across samples is paramount to the generation of physiologically relevant data when comparing samples of different RNA content. The T7 RNA polymerase (T7-IVT) amplification is widely used for microarray sample preparation. Characterization of the reactions kinetics has clearly indicated that its true linear phase is of short duration and is followed by a nonlinear phase. This second phase leads to modifications in transcript abundance that biases comparison between samples of different types. The impact assessment performed in this study has shown that the standard amplification protocol significantly lowers the quality of microarray data, rendering more than half of differentially expressed candidates undetected and distorting the true proportional differences of all candidates analyzed.


Reproduction, Fertility and Development | 2015

Exploring the function of long non-coding RNA in the development of bovine early embryos

Julieta Caballero; Isabelle Gilbert; Eric Fournier; Dominique Gagné; Sara Scantland; Angus D. Macaulay; Claude Robert

Now recognised as part of the cellular transcriptome, the function of long non-coding (lnc) RNA remains unclear. Previously, we found that some lncRNA molecules in bovine embryos are highly responsive to culture conditions. In view of a recent demonstration that lncRNA may play a role in regulating important functions, such as maintenance of pluripotency, modification of epigenetic marks and activation of transcription, we sought evidence of its involvement in embryogenesis. Among the numerous catalogued lncRNA molecules found in oocytes and early embryos of cattle, three candidates chosen for further characterisation were found unexpectedly in the cytoplasmic compartment rather than in the nucleus. Transcriptomic survey of subcellular fractions found these candidates also associated with polyribosomes and one of them spanning transzonal projections between cumulus cells and the oocyte. Knocking down this transcript in matured oocytes increased developmental rates, leading to larger blastocysts. Transcriptome and methylome analyses of these blastocysts showed concordant data for a subset of four genes, including at least one known to be important for blastocyst survival. Functional characterisation of the roles played by lncRNA in supporting early development remains elusive. Our results suggest that some lncRNAs play a role in translation control of target mRNA. This would be important for managing the maternal reserves within which is embedded the embryonic program, especially before embryonic genome activation.


Archive | 2011

RNA Processing During Early Embryogenesis: Managing Storage, Utilisation and Destruction

Angus D. Macaulay; Sara Scantland; Claude Robert

The classical model of the life of a messenger RNA (mRNA) is generally depicted as a cascade of typical cellular events initiated with the transcription of the genomic sequence followed by the usual maturation of the produced transcript through splicing of the intronic regions, addition of the cap structure on its 5’ end and polyadenylation of the 3’ end. The mature mRNA is then exported out of the nucleus and sent for translation in the endoplasmic reticulum where it will serve as template/blueprint for the production of the encoded protein. The typical life cycle of an mRNA is then concluded by its decay in cellular structures that take the shape of granules called processing bodies. These well accepted steps offer a general perspective of the life and death of most mRNAs in most cellular contexts. Nonetheless, this general model does not fit well with embryogenesis mainly due to the presence of transcriptionnaly impaired cells composing the early stage embryos. In fact, the stage at which the embryo acquires the potential to transcribe its genome is widely variable between species. For instance, the mouse genome is readily activated following fertilization while in Human; transcription is initiated between the 6 and 8-cell stage. Other non-mammalian species provide more extreme situations amongst which Xenopus leavis represents a prime example of non-classical RNA management as the early embryogenesis is accomplished through 12 cell cycles conducted in the absence of transcriptional activity. In this model organism, the first embryonic cells become transcriptionally active once the embryo is composed of roughly 4,000-8,000 cells. In the absence of transcription, the embryonic cell sustains its protein production using mRNAs found in the stocks that were stored during oogenesis. These stockpiles of transcripts are accumulated during the oocyte growth that took place in the ovary, and are generally accepted as a large component of the maternal legacy that is associated with developmental competence of the resulting embryo once the egg is fertilized. The mechanisms by which the oocyte stores these transcripts are still only partly understood.


Reproduction | 2011

Comprehensive cross production system assessment of the impact of in vitro microenvironment on the expression of messengers and long non-coding RNAs in the bovine blastocyst

Isabelle Côté; Christian Vigneault; Isabelle Laflamme; Joanie Laquerre; Eric Fournier; Isabelle Gilbert; Sara Scantland; Dominic Gagné; Patrick Blondin; Claude Robert


Archive | 2015

Running title: Cumulus cell transcriptional support to the oocyte Summary Sentence: Potential of the oocyte to complete maturation is dependent on cumulus cell transfer of large RNA to the gamete.

Angus D. Macaulay; Isabelle Gilbert; Sara Scantland; Eric Fournier; Fazl Ashkar; Habib A. Shojaei Saadi; Dominic Gagné; Marc-André Sirard; François J. Richard; Poul Hyttel; Claude Robert; Copenhagen Denmark

Collaboration


Dive into the Sara Scantland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge