Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Iltis is active.

Publication


Featured researches published by Isabelle Iltis.


Journal of Magnetic Resonance | 2010

In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results.

Dinesh K. Deelchand; Van de Moortele Pf; Gregory Adriany; Isabelle Iltis; Peter Andersen; John Strupp; John Thomas Vaughan; Kamil Ugurbil; Pierre Gilles Henry

In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far (1)H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER (1)H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T(1) relaxation times of metabolites were slightly longer while T(2) relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B(0) microsusceptibility effects are the main contributor to the minimum achievable linewidth.


Journal of Magnetic Resonance | 2010

In vivo 13C spectroscopy in the rat brain using hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate

Małgorzata Marjańska; Isabelle Iltis; Alexander A. Shestov; Dinesh K. Deelchand; Christopher D. Nelson; Kâmil Uğurbil; Pierre Gilles Henry

The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1-(13)C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1-(13)C]pyruvate and [2-(13)C]pyruvate is investigated. Injection of [2-(13)C]pyruvate led to the detection of [2-(13)C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1-(13)C]pyruvate enabled the detection of both [1-(13)C]lactate and [13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1-(13)C]pyruvate and to determine the values of VPDH and VLDH.


NMR in Biomedicine | 2009

Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: An in vivo localized 1H MRS study

Isabelle Iltis; Dee M. Koski; Lynn E. Eberly; Christopher D. Nelson; Dinesh K. Deelchand; Julien Valette; Kamil Ugurbil; Kelvin O. Lim; Pierre Gilles Henry

Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single‐voxel 1H‐MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short‐echo time sequence (STEAM) was used to acquire spectra in a 32‐µL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre‐ vs. post‐injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti‐psychotic drugs in vivo. Copyright


Molecular Pharmaceutics | 2013

Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy.

Mithun M. Shenoi; Isabelle Iltis; Jeunghwan Choi; Nathan A. Koonce; Gregory J. Metzger; Robert J. Griffin; John C. Bischof

Surgery, radiation and chemotherapy remain the mainstay of current cancer therapy. However, treatment failure persists due to the inability to achieve complete local control of the tumor and curtail metastatic spread. Vascular disrupting agents (VDAs) are a class of promising systemic agents that are known to synergistically enhance radiation, chemotherapy or thermal treatments of solid tumors. Unfortunately, there is still an unmet need for VDAs with more favorable safety profiles and fewer side effects. Recent work has demonstrated that conjugating VDAs to other molecules (polyethylene glycol, CNGRCG peptide) or nanoparticles (liposomes, gold) can reduce toxicity of one prominent VDA (tumor necrosis factor alpha, TNF-α). In this report, we show the potential of a gold conjugated TNF-α nanoparticle (NP-TNF) to improve multimodal cancer therapies with VDAs. In a dorsal skin fold and hindlimb murine xenograft model of prostate cancer, we found that NP-TNF disrupts endothelial barrier function and induces a significant increase in vascular permeability within the first 1-2 h followed by a dramatic 80% drop in perfusion 2-6 h after systemic administration. We also demonstrate that the tumor response to the nanoparticle can be verified using dynamic contrast-enhanced magnetic resonance imaging (MRI), a technique in clinical use. Additionally, multimodal treatment with thermal therapies at the perfusion nadir in the sub- and supraphysiological temperature regimes increases tumor volumetric destruction by over 60% and leads to significant tumor growth delays compared to thermal therapy alone. Lastly, NP-TNF was found to enhance thermal therapy in the absence of neutrophil recruitment, suggesting that immune/inflammatory regulation is not central to its power as part of a multimodal approach. Our data demonstrate the potential of nanoparticle-conjugated VDAs to significantly improve cancer therapy by preconditioning tumor vasculature to a secondary insult in a targeted manner. We anticipate our work to direct investigations into more potent tumor vasculature specific combinations of VDAs and nanoparticles with the goal of transitioning optimal regimens into clinical trials.


Journal of Magnetic Resonance | 2010

1H MRS detection of glycine residue of reduced glutathione in vivo

Lana G. Kaiser; Małgorzata Marjańska; Gerald B. Matson; Isabelle Iltis; Seth D. Bush; Brian J. Soher; Susanne G. Mueller; Karl Young

Glutathione (GSH) is a powerful antioxidant found inside different kinds of cells, including those of the central nervous system. Detection of GSH in the human brain using (1)H MR spectroscopy is hindered by low concentration and spectral overlap with other metabolites. Previous MRS methods focused mainly on the detection of the cysteine residue (GSH-Cys) via editing schemes. This study focuses on the detection of the glycine residue (GSH-Gly), which is overlapped by glutamate and glutamine (Glx) under physiological pH and temperature. The first goal of the study was to obtain the spectral parameters for characterization of the GSH-Gly signal under physiological conditions. The second goal was to investigate a new method of separating GSH-Gly from Glx in vivo. The characterization of the signal was carried out by utilization of numerical simulations as well as experiments over a wide range of magnetic fields (4.0-14T). The proposed separation scheme utilizes J-difference editing to quantify the Glx contribution to separate it from the GSH-Gly signal. The presented method retains 100% of the GSH-Gly signal. The overall increase in signal to noise ratio of the targeted resonance is calculated to yield a significant SNR improvement compared to previously used methods that target GSH-Cys residue. This allows shorter acquisition times for in vivo human clinical studies.


Magnetic Resonance in Medicine | 2009

In vivo proton MRS to quantify anesthetic effects of pentobarbital on cerebral metabolism and brain activity in rat

Fei Du; Yi Zhang; Isabelle Iltis; Małgorzata Marjańska; Xiao Hong Zhu; Pierre Gilles Henry; Wei Chen

To quantitatively investigate the effects of pentobarbital anesthesia on brain activity, brain metabolite concentrations and cerebral metabolic rate of glucose, in vivo proton MR spectra, and electroencephalography were measured in the rat brain with various doses of pentobarbital. The results show that (1) the resonances attributed to propylene glycol, a solvent in pentobarbital injection solution, can be robustly detected and quantified in the brain; (2) the concentration of most brain metabolites remained constant under the isoelectric state (silent electroencephalography) with a high dose of pentobarbital compared to mild isoflurane anesthesia condition, except for a reduction of 61% in the brain glucose level, which was associated with a 37% decrease in cerebral metabolic rate of glucose, suggesting a significant amount of “housekeeping” energy for maintaining brain cellular integrity under the isoelectric state; and (3) electroencephalography and cerebral metabolic activities were tightly coupled to the pentobarbital anesthesia depth and they can be indirectly quantified by the propylene glycol resonance signal at 1.13 ppm. This study indicates that in vivo proton MR spectroscopy can be used to measure changes in cerebral metabolite concentrations and cerebral metabolic rate of glucose under varied pentobarbital anesthesia states; moreover, the propylene glycol signal provides a sensitive biomarker for quantitatively monitoring these changes and anesthesia depth noninvasively. Magn Reson Med, 2009.


Brain Research | 2010

1H MR Spectroscopy in Friedreich's Ataxia and Ataxia with Oculomotor Apraxia Type 2

Isabelle Iltis; Diane Hutter; Khalaf Bushara; H. Brent Clark; Myron D. Gross; Lynn E. Eberly; Christopher M. Gomez; Gülin Öz

BACKGROUND AND AIM Friedreichs ataxia (FRDA) and ataxia with oculomotor apraxia type 2 (AOA2) are the two most frequent forms of autosomal recessive cerebellar ataxias. However, brain metabolism in these disorders is poorly characterized and biomarkers of the disease progression are lacking. We aimed at assessing the neurochemical profile of the pons, the cerebellar hemisphere and the vermis in patients with FRDA and AOA2 to identify potential biomarkers of these diseases. METHODS Short-echo, single-voxel proton ((1)H) magnetic resonance spectroscopy data were acquired from 8 volunteers with FRDA, 9 volunteers with AOA2, and 38 control volunteers at 4T. Disease severity was assessed by the Friedreichs Ataxia Rating Scale (FARS). RESULTS Neuronal loss/dysfunction was indicated in the cerebellar vermis and hemispheres in both diseases by lower total N-acetylaspartate levels than controls. The putative gliosis marker myo-inositol was higher than controls in the vermis and pons in AOA2 and in the vermis in FRDA. Total creatine, another potential gliosis marker, was higher in the cerebellar hemispheres in FRDA relative to controls. Higher glutamine in FRDA and lower glutamate in AOA2 than controls were observed in the vermis, indicating different mechanisms possibly leading to altered glutamatergic neurotransmission. In AOA2, total N-acetylaspartate levels in the cerebellum strongly correlated with the FARS score (p<0.01). CONCLUSION Distinct neurochemical patterns were observed in the two patient populations, warranting further studies with larger patient populations to determine if the alterations in metabolite levels observed here may be utilized to monitor disease progression and treatment.


Journal of Magnetic Resonance | 2010

In vivo 1H NMR spectroscopy of the human brain at 9.4T: Initial results

Dinesh K. Deelchand; Pierre-Francois Van de Moortele; Gregor Adriany; Isabelle Iltis; Peter Andersen; John Strupp; J. Thomas Vaughan; Kâmil Uğurbil; Pierre Gilles Henry

In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far (1)H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER (1)H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T(1) relaxation times of metabolites were slightly longer while T(2) relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B(0) microsusceptibility effects are the main contributor to the minimum achievable linewidth.


Magnetic Resonance in Medicine | 2014

Improved quantification precision of human brain short echo‐time 1H magnetic resonance spectroscopy at high magnetic field: A simulation study

Dinesh K. Deelchand; Isabelle Iltis; Pierre Gilles Henry

The gain in quantification precision that can be expected in human brain 1H MRS at very high field remains a matter of debate. Here, we investigate this issue using Monte‐Carlo simulations.


Magnetic Resonance in Medicine | 2008

1H MRS in the rat brain under pentobarbital anesthesia: Accurate quantification of in vivo spectra in the presence of propylene glycol

Isabelle Iltis; Małgorzata Marjańska; Fei Du; Dee M. Koski; Xiao Hong Zhu; Kâmil Uǧurbil; Wei Chen; Pierre Gilles Henry

Commercial solutions for pentobarbital anesthesia typically contain water, ethanol, and propylene glycol (PG). The last two are characterized by resonances that can affect the determination of metabolite concentrations from 1H spectra. The purpose of the present study was to measure the concentration of metabolites in the rat brain in vivo under pentobarbital anesthesia using 1H MRS. Resonances of PG, but not ethanol, were observed in the rat brain. Chemical shifts and J‐coupling constants for PG were measured at 37°C and pH 7.1 and used for spectral simulation. Inclusion of the simulated PG spectrum in the basis set for LCModel analysis enabled accurate fitting of in vivo spectra. This work demonstrates that concentration of brain metabolites can be reliably measured using 1H spectroscopy under pentobarbital anesthesia. The chemical shifts and J‐coupling values reported here can be used to simulate the spectrum of PG at any field strength, with various pulse sequences. Magn Reson Med, 2008.

Collaboration


Dive into the Isabelle Iltis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Strupp

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gülin Öz

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge