Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Masneuf-Pomarède is active.

Publication


Featured researches published by Isabelle Masneuf-Pomarède.


Yeast | 2005

Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae

Elena S. Naumova; Gennadi I. Naumov; Isabelle Masneuf-Pomarède; Michel Aigle; Denis Dubourdieu

The genomic constitution of different S. bayanus strains and natural interspecific Saccharomyces hybrids has been studied by genetic and molecular methods. Unlike S. bayanus var. uvarum, some S. bayanus var. bayanus strains (the type culture CBS 380, CBS 378, CBS 425, CBS 1548) harbour a number of S. cerevisiae subtelomeric sequences: Y′, pEL50, SUC, RTM and MAL. The two varieties, having 86–100% nDNA–nDNA reassociation, are partly genetically isolated from one another but completely isolated from S. cerevisiae. Genetic and molecular data support the maintaining of var. bayanus and var. uvarum strains in the species S. bayanus. Using Southern hybridization with species‐specific molecular markers, RFLP of the MET2 gene and flow cytometry analysis, we showed that the non‐S. cerevisiae parents are different in lager brewing yeasts and in wine hybrid strains. Our results suggest that S. pastorianus is a hybrid between S. cerevisiae and S. bayanus var. bayanus, while S. bayanus var. uvarum contributed to the formation of the wine hybrids S6U and CID1. According to the partial sequence of ACT1 gene and flow cytometry analysis, strain CID1 is a triple hybrid between S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum. Copyright


Nature Communications | 2014

A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum.

Pedro L. Almeida; Carla Gonçalves; Sara Teixeira; Diego Libkind; Martin Bontrager; Isabelle Masneuf-Pomarède; Warren Albertin; Pascal Durrens; David James Sherman; Philippe Marullo; Chris Todd Hittinger; Paula Gonçalves; José Paulo Sampaio

In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.


Food Microbiology | 2010

Characterization of the yeast ecosystem in grape must and wine using real-time PCR

K. Zott; Olivier Claisse; J. Coulon; Aline Lonvaud-Funel; Isabelle Masneuf-Pomarède

The complex microbial ecosystem of grape must and wine harbours a wide diversity of yeast species. Specific oligonucleotide primers for real-time quantitative PCR(QPCR) were designed to analyse several important non-Saccharomyces yeasts (Issatchenkia orientalis, Metschnikowia pulcherrima, Torulaspora delbrueckii, Candida zemplinina and Hanseniaspora spp.) and Saccharomyces spp. in fresh wine must, during fermentation and in the finished wine. The specificity of all primer couples for their target yeast species were validated and the QPCR methods developed were compared with a classic approach of colony identification by RFLP-ITS-PCR on cultured samples. Once the methods had been developed and validated, they were used to study these non-Saccharomyces yeasts in wine samples and to monitor their dynamics throughout the fermentation process. This study confirms the usefulness and the relevance of QPCR for studying non-Saccharomyces yeasts in the complex yeast ecosystem of grape must and wine.


International Journal of Food Microbiology | 2010

Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains.

Isabelle Masneuf-Pomarède; Marina Bely; Philippe Marullo; Aline Lonvaud-Funel; Denis Dubourdieu

Among Saccharomyces yeast, S. cerevisiae and S. bayanus var. uvarum are related species, sharing the same ecosystem in sympatry. The physiological and technological properties of a large collection of genetically-identified S. bayanus var. uvarum wine strains were investigated in a biometric study and their fermentation behavior was compared at 24 degrees C and 13 degrees C. The variability of the phenotypic traits was considered at both intraspecific and interspecific levels. Low ethanol tolerance at 24 degrees C and production of high levels of 2-phenylethanol and its acetate were clearly revealed as discriminative technological traits, distinguishing the S. bayanus var. uvarum strains from S. cerevisiae. Although some S. bayanus var. uvarum strains produced very small amounts of acetic acid, this was not a species-specific trait, as the distribution of values was similar in both species. Fermentation kinetics at 24 degrees C showed that S. bayanus var. uvarum maintained a high fermentation rate after Vmax, with low nitrogen requirements, but stuck fermentations were observed at later stages. In contrast, a shorter lag phase compared with S.cerevisiae, higher cell viability, and the ability to complete alcoholic fermentation at 13 degrees C confirmed the low-temperature adaptation trait of S.bayanus var. uvarum. This study produced a phenotypic characterization data set for a collection of S. bayanus var. uvarum strains, thus paving the way for industrial developments using this species as a new genetic resource.


International Journal of Food Microbiology | 2011

The grape must non-Saccharomyces microbial community: impact on volatile thiol release.

Katharina Zott; Cécile Thibon; Marina Bely; Aline Lonvaud-Funel; Denis Dubourdieu; Isabelle Masneuf-Pomarède

Several studies have reported the beneficial influence of non-Saccharomyces yeasts and their potential applications in the wine industry, mainly in mixed-culture fermentation with S. cerevisiae. The potential impact of 15 non-Saccharomyces strains from 7 species on 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) release in model medium and Sauvignon Blanc must was evaluated after partial fermentation. Whereas the impact of non-Saccharomyces on 4MSP release in both media was low, some M. pulcherrima, T. delbrueckii and K. thermotolerans strains had a high capacity to release 3SH, despite their minimal fermentation activity. As previously demonstrated for Saccharomyces yeast, this contribution is strain dependant. Taking into account their dynamic and quantitative presence during the whole process, the real impact of non-Saccharomyces yeast on 4MSP and 3SH release was evaluated using a recreated community simulating the yeast ecosystem. Our results revealed a positive impact on 3SH release in Sauvignon Blanc wines by promoting non-Saccharomyces yeast activity and delaying the growth of S. cerevisiae. Some non-Saccharomyces yeast strains are capable of making a positive contribution to volatile thiol release in wines, essentially during the pre-fermentation stage in winemaking, when this microbiological sub-population is dominant.


Journal of Industrial Microbiology & Biotechnology | 2014

High‑throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation.

Vanessa David; Sébastien Terrat; Khaled Herzine; Olivier Claisse; Sandrine Rousseaux; Raphaëlle Tourdot-Maréchal; Isabelle Masneuf-Pomarède; Lionel Ranjard; Hervé Alexandre

We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITS-RFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques.


PLOS ONE | 2013

The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids

Warren Albertin; Telma da Silva; Michel Rigoulet; Bénédicte Salin; Isabelle Masneuf-Pomarède; Dominique de Vienne; Delphine Sicard; Marina Bely; Philippe Marullo

In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.


International Journal of Food Microbiology | 2014

Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must.

Warren Albertin; Cécile Miot-Sertier; Marina Bely; Philippe Marullo; Joana Coulon; Virginie Moine; Benoit Colonna-Ceccaldi; Isabelle Masneuf-Pomarède

Yeast species of Hanseniaspora and Candida genus are predominant during the early stages of winemaking, while species of Metschnikowia, Pichia, Zygoascus, Issatchenkia, Torulaspora and other genera are present at lower population levels. The impact of common oenological practices on yeast dynamics during the prefermentative stage and the early stage of alcoholic fermentation (AF) remains elusive. In this work, the effect of four prefermentative oenological practices (clarification degree, temperature, sulphite and starter yeast addition) on yeast dynamics was evaluated in a Chardonnay grape must. The growth curves of four genus or species, namely Saccharomyces spp., Hanseniaspora spp., Candida zemplinina and Torulaspora delbrueckii, were followed by quantitative PCR. The fermentation kinetics were also recorded, as well as the production of acetic acid. Variance analysis allowed determining the effect of each practice and their interaction factors, as well as their relative importance on yeast dynamics and fermentation kinetics. Our experimental design showed that the population dynamics of the four species were differently impacted by the oenological practices, with some species being more sensitive than others to the clarification degree (C. zemplinina), sulphite addition (Saccharomyces spp.), starter yeast inoculation (Hanseniaspora spp.) or prefermentation temperature (T. delbrueckii). Significant interaction effects between practices were revealed, highlighting the interest of experimental design allowing interaction analysis, as some factors may buffer the effect of other ones. Hanseniaspora genus showed atypical behaviour: growth dynamics showed a decrease during AF that we interpreted as early cellular lysis. In conclusion, this study provides new insights on the impact of common oenological practices on the dynamics of non-Saccharomyces yeast that will be useful for a better management of mixed fermentation between S. cerevisiae and non-Saccharomyces yeasts.


PLOS ONE | 2015

Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions

Telma da Silva; Warren Albertin; Christine Dillmann; Marina Bely; Stéphane la Guerche; Christophe Giraud; Sylvie Huet; Delphine Sicard; Isabelle Masneuf-Pomarède; Dominique de Vienne; Philippe Marullo

Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait – kinetics parameters, life-history traits, enological parameters and aromas –, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.


Microbiology | 2011

Taxonomy, ecology, and genetics of the yeast Saccharomyces bayanus : A new object for science and practice

Gennadi I. Naumov; E. S. Naumova; N. N. Martynenko; Isabelle Masneuf-Pomarède

The review considers various aspects of the biology of the yeast Saccharomyces bayanus, which is distantly related to the cultured yeast S. cerevisiae. The cryotolerant S. bayanus strains found in wine-making became the second most important yeast for basic and applied studies. Introduction of natural and experimental hybrids of S. cerevisiae × S. bayanus in a range of fermentation processes indicates the high breeding importance of S. bayanus. The biological species S. bayanus acts as a new gene pool for the scientific and breeding projects.

Collaboration


Dive into the Isabelle Masneuf-Pomarède's collaboration.

Top Co-Authors

Avatar

Marina Bely

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Marullo

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck Salin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Durrens

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gennadi I. Naumov

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Delphine Sicard

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge