Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Warren Albertin is active.

Publication


Featured researches published by Warren Albertin.


Genetics | 2006

Numerous and Rapid Nonstochastic Modifications of Gene Products in Newly Synthesized Brassica napus Allotetraploids

Warren Albertin; Thierry Balliau; Philippe Brabant; Anne-Marie Chèvre; Frédérique Eber; Christian Malosse; Hervé Thiellement

Polyploidization is a widespread process that results in the merger of two or more genomes in a common nucleus. To investigate modifications of gene expression occurring during allopolyploid formation, the Brassica napus allotetraploid model was chosen. Large-scale analyses of the proteome were conducted on two organs, the stem and root, so that >1600 polypeptides were screened. Comparative proteomics of synthetic B. napus and its homozygous diploid progenitors B. rapa and B. oleracea showed that very few proteins disappeared or appeared in the amphiploids (<1%), but a strikingly high number (25–38%) of polypeptides displayed quantitative nonadditive pattern. Nonstochastic gene expression repatterning was found since 99% of the detected variations were reproducible in four independently created amphiploids. More than 60% of proteins displayed a nonadditive pattern closer to the paternal parent B. rapa. Interspecific hybridization triggered the majority of the deviations (89%), whereas very few variations (∼3%) were associated with genome doubling and more significant alterations arose from selfing (∼9%). Some nonadditive proteins behaved similarly in both organs, while others exhibited contrasted behavior, showing rapid organ-specific regulation. B. napus formation was therefore correlated with immediate and directed nonadditive changes in gene expression, suggesting that the early steps of allopolyploidization repatterning are controlled by nonstochastic mechanisms.


Nature Communications | 2014

A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum.

Pedro L. Almeida; Carla Gonçalves; Sara Teixeira; Diego Libkind; Martin Bontrager; Isabelle Masneuf-Pomarède; Warren Albertin; Pascal Durrens; David James Sherman; Philippe Marullo; Chris Todd Hittinger; Paula Gonçalves; José Paulo Sampaio

In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.


Fems Yeast Research | 2009

Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach

Philippe Marullo; Chantal Mansour; Matthieu Dufour; Warren Albertin; Delphine Sicard; Marina Bely; Denis Dubourdieu

During red wine fermentation, high temperatures may cause stuck fermentation by affecting the physiology of fermenting yeast. This deleterious effect is the result of the complex interaction of temperature with other physicochemical parameters of grape juice, such as sugar and lipid content. The genetic background of fermenting yeast also interacts with this complex matrix and some strains are more resistant to high temperatures than others. Here, the temperature tolerance of nine commercial starters was evaluated, demonstrating that, at high sugar concentrations, half of them are sensitive to temperature. Using a classical backcross approach, one thermo-sensitive commercial starter was genetically improved by introducing quantitative trait loci conferring resistance to temperature. With this breeding program it is possible to obtain a thermo-resistant strain sharing most of its genome with the initial commercial starter. The parental and improved strains were compared for population growth and fermentation ability in various conditions. Despite their common genetic background, these two strains showed slight physiological differences in response to environmental changes that enable identification of the key physiological parameters influencing stuck fermentation.


Journal of Evolutionary Biology | 2009

Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species.

Warren Albertin; Philippe Marullo; Michel Aigle; Aurélie Bourgais; Marina Bely; Christine Dillmann; Damien M. de Vienne; Delphine Sicard

Partial or whole‐genome duplications have played a major role in the evolution of new species. We have investigated the variation of ploidy level in a panel of domesticated strains of Saccharomyces cerevisiae coming from different geographical origins. Segregation studies and crosses with tester strains of different ploidy levels showed that part of the strains were well‐balanced autotetraploids displaying tetrasomic inheritance. The presence of up to four different alleles for various loci is consistent with a polyploidization mechanism relying on the fusion of two nonreduced meiospores coming from two S. cerevisiae strains. Autotetraploidy was also in accordance with karyotype and flow cytometry analyses. Interestingly, most bakery strains were tetraploids, suggesting a link between ploidy level and human use. The null or drastically reduced fertility of the hybrids between tetraploid and diploid strains indicated that domesticated S. cerevisiae strains are composed of two groups isolated by post‐zygotic reproductive barriers.


Applied and Environmental Microbiology | 2011

Population Size Drives Industrial Saccharomyces cerevisiae Alcoholic Fermentation and Is under Genetic Control

Warren Albertin; Philippe Marullo; Michel Aigle; Christine Dillmann; Dominique de Vienne; Marina Bely; Delphine Sicard

ABSTRACT Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO2 production rate (V max) was not related to the maximum CO2 production rate per cell. Instead, a highly significant correlation between V max and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement.


PLOS ONE | 2014

Winemaking and Bioprocesses Strongly Shaped the Genetic Diversity of the Ubiquitous Yeast Torulaspora delbrueckii

Warren Albertin; Laura Chasseriaud; Guillaume Comte; Aurélie Panfili; Adline Delcamp; Franck Salin; Philippe Marullo; Marina Bely

The yeast Torulaspora delbrueckii is associated with several human activities including oenology, bakery, distillery, dairy industry, etc. In addition to its biotechnological applications, T. delbrueckii is frequently isolated in natural environments (plant, soil, insect). T. delbrueckii is thus a remarkable ubiquitous yeast species with both wild and anthropic habitats, and appears to be a perfect yeast model to search for evidence of human domestication. For that purpose, we developed eight microsatellite markers that were used for the genotyping of 110 strains from various substrates and geographical origins. Microsatellite analysis showed four genetic clusters: two groups contained most nature strains from Old World and Americas respectively, and two clusters were associated with winemaking and other bioprocesses. Analysis of molecular variance (AMOVA) confirmed that human activities significantly shaped the genetic variability of T. delbrueckii species. Natural isolates are differentiated on the basis of geographical localisation, as expected for wild population. The domestication of T. delbrueckii probably dates back to the Roman Empire for winemaking (∼1900 years ago), and to the Neolithic era for bioprocesses (∼4000 years ago). Microsatellite analysis also provided valuable data regarding the life-cycle of the species, suggesting a mostly diploid homothallic life. In addition to population genetics and ecological studies, the microsatellite tool will be particularly useful for further biotechnological development of T. delbrueckii strains for winemaking and other bioprocesses.


PLOS ONE | 2013

The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids

Warren Albertin; Telma da Silva; Michel Rigoulet; Bénédicte Salin; Isabelle Masneuf-Pomarède; Dominique de Vienne; Delphine Sicard; Marina Bely; Philippe Marullo

In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.


Molecular Biology and Evolution | 2013

Yeast Proteome Variations Reveal Different Adaptive Responses to Grape Must Fermentation

Mélisande Blein-Nicolas; Warren Albertin; Benoı̂t Valot; Philippe Marullo; Delphine Sicard; Christophe Giraud; Sylvie Huet; Aurélie Bourgais; Christine Dillmann; Dominique de Vienne; Michel Zivy

Saccharomyces cerevisiae and S. uvarum are two domesticated species of the Saccharomyces sensu stricto clade that diverged around 100 Ma after whole-genome duplication. Both have retained many duplicated genes associated with glucose fermentation and are characterized by the ability to achieve grape must fermentation. Nevertheless, these two species differ for many other traits, indicating that they underwent different evolutionary histories. To determine how the evolutionary histories of S. cerevisiae and S. uvarum are mirrored on the proteome, we analyzed the genetic variability of the proteomes of domesticated strains of these two species by quantitative mass spectrometry. Overall, 445 proteins were quantified. Massive variations of protein abundances were found, that clearly differentiated the two species. Abundance variations in specific metabolic pathways could be related to phenotypic traits known to discriminate the two species. In addition, proteins encoded by duplicated genes were shown to be differently recruited in each species. Comparing the strain differentiation based on the proteome variability to those based on the phenotypic and genetic variations further revealed that the strains of S. uvarum and some strains of S. cerevisiae displayed similar fermentative performances despite strong proteomic and genomic differences. Altogether, these results indicate that the ability of S. cerevisae and S. uvarum to complete grape must fermentation arose through different evolutionary roads, involving different metabolic pathways and duplicated genes.


International Journal of Food Microbiology | 2014

Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must.

Warren Albertin; Cécile Miot-Sertier; Marina Bely; Philippe Marullo; Joana Coulon; Virginie Moine; Benoit Colonna-Ceccaldi; Isabelle Masneuf-Pomarède

Yeast species of Hanseniaspora and Candida genus are predominant during the early stages of winemaking, while species of Metschnikowia, Pichia, Zygoascus, Issatchenkia, Torulaspora and other genera are present at lower population levels. The impact of common oenological practices on yeast dynamics during the prefermentative stage and the early stage of alcoholic fermentation (AF) remains elusive. In this work, the effect of four prefermentative oenological practices (clarification degree, temperature, sulphite and starter yeast addition) on yeast dynamics was evaluated in a Chardonnay grape must. The growth curves of four genus or species, namely Saccharomyces spp., Hanseniaspora spp., Candida zemplinina and Torulaspora delbrueckii, were followed by quantitative PCR. The fermentation kinetics were also recorded, as well as the production of acetic acid. Variance analysis allowed determining the effect of each practice and their interaction factors, as well as their relative importance on yeast dynamics and fermentation kinetics. Our experimental design showed that the population dynamics of the four species were differently impacted by the oenological practices, with some species being more sensitive than others to the clarification degree (C. zemplinina), sulphite addition (Saccharomyces spp.), starter yeast inoculation (Hanseniaspora spp.) or prefermentation temperature (T. delbrueckii). Significant interaction effects between practices were revealed, highlighting the interest of experimental design allowing interaction analysis, as some factors may buffer the effect of other ones. Hanseniaspora genus showed atypical behaviour: growth dynamics showed a decrease during AF that we interpreted as early cellular lysis. In conclusion, this study provides new insights on the impact of common oenological practices on the dynamics of non-Saccharomyces yeast that will be useful for a better management of mixed fermentation between S. cerevisiae and non-Saccharomyces yeasts.


PLOS ONE | 2015

Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions

Telma da Silva; Warren Albertin; Christine Dillmann; Marina Bely; Stéphane la Guerche; Christophe Giraud; Sylvie Huet; Delphine Sicard; Isabelle Masneuf-Pomarède; Dominique de Vienne; Philippe Marullo

Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait – kinetics parameters, life-history traits, enological parameters and aromas –, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.

Collaboration


Dive into the Warren Albertin's collaboration.

Top Co-Authors

Avatar

Marina Bely

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Marullo

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Miot-Sertier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Delphine Sicard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Dillmann

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franck Salin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique de Vienne

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Telma da Silva

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge