Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isham Huizar is active.

Publication


Featured researches published by Isham Huizar.


american thoracic society international conference | 2011

An open-label trial of rituximab therapy in pulmonary alveolar proteinosis

Mani S. Kavuru; Anagha Malur; Irene Marshall; Barbara P. Barna; Moulay Meziane; Isham Huizar; Heidi Dalrymple; Reema Karnekar; Mary Jane Thomassen

Rituximab, a monoclonal antibody directed against the B-lymphocyte antigen CD20, has shown promise in several autoimmune disorders. Pulmonary alveolar proteinosis (PAP) is an autoimmune disorder characterised by autoantibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF). An open-label, proof-of-concept phase II clinical trial was conducted in 10 PAP patients. The intervention consisted of two intravenous infusions of rituximab (1,000 mg) 15 days apart. Bronchoalveolar lavage (BAL) fluid and peripheral blood samples were collected. The primary outcome was improvement in arterial blood oxygenation. Both arterial oxygen tension and alveolar–arterial oxygen tension difference in room air improved in seven out of the nine patients completing the study. Lung function and high-resolution computed tomography scans, which were secondary outcomes, also improved. Peripheral blood CD19+ B-lymphocytes decreased from mean±sem 15±2% to <0.05% (n=10) 15 days post-therapy. This decrease persisted for 3 months in all patients; at 6 months, CD19+ B-cells were detected in four out of seven patients (5±2%). Total anti-GM-CSF immunoglobulin (Ig)G levels from baseline to 6 months were decreased in BAL fluids (n=8) but unchanged in sera (n=9). In this PAP cohort: 1) rituximab was well-tolerated and effectively ameliorated lung disease; and 2) reduction in anti-GM-CSF IgG levels in the lung correlated with disease changes, suggesting that disease pathogenesis is related to autoantibody levels in the target organ.


Journal of Leukocyte Biology | 2014

MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis.

Sina A. Gharib; Laura K. Johnston; Isham Huizar; Timothy P. Birkland; Josiah F. Hanson; Ying Wang; William C. Parks; Anne M. Manicone

Members of the MMP family function in various processes of innate immunity, particularly in controlling important steps in leukocyte trafficking and activation. MMP28 (epilysin) is a member of this family of proteinases, and we have found that MMP28 is expressed by macrophages and regulates their recruitment to the lung. We hypothesized that MMP28 regulates other key macrophage responses, such as macrophage polarization. Furthermore, we hypothesized that these MMP28‐dependent changes in macrophage polarization would alter fibrotic responses in the lung. We examined the gene expression changes in WT and Mmp28−/− BMDMs, stimulated with LPS or IL‐4/IL‐13 to promote M1 and M2 cells, respectively. We also collected macrophages from the lungs of Pseudomonas aeruginosa‐exposed WT and Mmp28−/− mice to evaluate changes in macrophage polarization. Lastly, we evaluated the macrophage polarization phenotypes during bleomycin‐induced pulmonary fibrosis in WT and Mmp28−/− mice and assessed mice for differences in weight loss and total collagen levels. We found that MMP28 dampens proinflammatory macrophage function and promots M2 programming. In both in vivo models, we found deficits in M2 polarization in Mmp28−/− mice. In bleomycin‐induced lung injury, these changes were associated with reduced fibrosis. MMP28 is an important regulator of macrophage polarization, promoting M2 function. Loss of MMP28 results in reduced M2 polarization and protection from bleomycin‐induced fibrosis. These findings highlight a novel role for MMP28 in macrophage biology and pulmonary disease.


American Journal of Pathology | 2010

Tissue Inhibitor of Metalloproteinases 3 Regulates Resolution of Inflammation following Acute Lung Injury

Sean E. Gill; Isham Huizar; Eli M. Bench; Samuel W. Sussman; Ying Wang; Rama Khokha; William C. Parks

Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits not only matrix metalloproteinases but also a disintegrin and metalloproteinase domain family members and thus contributes to controlling diverse processes mediated by proteolysis. We used Timp3(-/-) mice to assess the role of this inhibitor in acute lung injury. After bleomycin-induced injury, inflammation, as indicated by the influx of neutrophils in bronchoalveolar lavage (BAL), peaked at 7 days post-injury in the wild-type mice and began to wane thereafter; however, in Timp3(-/-) mice, inflammation persisted up to 28 days. Furthermore, although the level of chemokines in BAL and lung homogenate was similar in both genotypes, BAL from Timp3(-/-) mice 7, 14, and 28 days post-injury had increased neutrophil chemotactic activity compared with wild-type BAL. At day 14, a higher percentage of apoptotic neutrophils were present in wild-type mice compared with Timp3(-/-) mice, further suggesting that TIMP3 constrains continued neutrophil influx. In addition, total matrix metalloproteinase activity was increased in lungs from Timp3(-/-) mice, and treatment of mice with a synthetic inhibitor of metalloproteinases rescued the enhanced neutrophilia phenotype. These data demonstrate that TIMP3 regulates neutrophil influx in the lung following injury through its ability to inhibit metalloproteinase activity and indicates that TIMP3 functions to promote the resolution of inflammation in the lung.


American Journal of Respiratory and Critical Care Medicine | 2009

Insulin-like Growth Factor-I Receptor Blockade Improves Outcome in Mouse Model of Lung Injury

Jung Eun Choi; Sung soon Lee; Donald A. Sunde; Isham Huizar; Kathy Haugk; Victor J. Thannickal; Ragini Vittal; Stephen R. Plymate; Lynn M. Schnapp

RATIONALE The insulin-like growth factor-I (IGF-I) pathway is an important determinant of survival and proliferation in many cells. However, little is known about the role of the IGF-I pathway in lung injury. We previously showed elevated levels of IGF-I in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome. Furthermore, immunodepletion of IGF from acute respiratory distress syndrome bronchoalveolar lavage increased fibroblast apoptosis. OBJECTIVES We examined the effect of blockade of type 1 IGF tyrosine kinase receptor (IGF-IR) in a murine model of bleomycin-induced lung injury and fibrosis. METHODS Mice were treated with a monoclonal antibody against the IGF-I receptor (A12) or vehicle after intratracheal bleomycin instillation. MEASUREMENTS AND MAIN RESULTS Mice treated with A12 antibody had significantly improved survival after bleomycin injury compared with control mice. Both groups of mice had a similar degree of fibrosis on days 7 and 14, but by Day 28 the A12-treated group had significantly less fibrosis. Delayed treatment with A12 also resulted in decreased fibrosis. A12-treated mice had significantly decreased apoptotic cells on Day 28 compared with control mice. We confirmed that A12 treatment induced mouse lung fibroblast apoptosis in vitro. In addition, IGF-I increased lung fibroblast migration. The primary pathway activated by IGF-I in lung fibroblasts was the insulin receptor substrate-2/phosphatidylinositol 3-kinase/Akt axis. CONCLUSIONS IGF-I regulated survival and migration of fibrogenic cells in the lung. Blockade of the IGF pathway increased fibroblast apoptosis and subsequent resolution of pulmonary fibrosis. Thus, IGF-IR may be a potential target for treatment of lung injury and fibrosis.


Current Opinion in Pulmonary Medicine | 2009

Alveolar proteinosis syndrome: pathogenesis, diagnosis, and management.

Isham Huizar; Mani S. Kavuru

Purpose of review This review discusses the most recent clinical and basic research literature on pulmonary alveolar proteinosis (PAP) as it relates to pathogenesis, diagnosis, and management. Recent findings The discovery of Granulocyte macrophage-colony stimulating factor (GM-CSF) and the alveolar macrophage as critical regulators of surfactant protein and lipid homeostasis has led to significant advances in PAP. Adults affected by PAP have circulating neutralizing anti-GM-CSF antibodies. Reduced localized GM-CSF activity in the lung (from neutralizing anti-GM-CSF antibodies), decreases alveolar macrophage surfactant degradation with surfactant excess and accumulation. Cause, source of antibodies or downstream effects of GM-CSF deficiency is speculative. GM-CSF antibodies above a threshold level have proved to be a useful diagnostic test. Research towards therapy has focused on improving the technique for therapeutic whole lung lavage as well as overcoming effects of neutralizing anti-GM-CSF, which include GM-CSF therapy (systemic and inhaled) and anecdotal reports of anti-B cell therapy. Whereas this approach has been somewhat successful for primary PAP, other causes of PAP (i.e. alveolar macrophage dysfunction, surfactant protein alterations) are still without therapy. Summary Understanding of the pathogenesis of PAP has greatly increased in the last decade; study has brought better comprehension of lung biology and recognition of the critical role for GM-CSF and alveolar macrophage in surfactant clearance. Balance between resident immune cell population and normal lung function still needs further study. Resident alveolar macrophages have an essential role in surfactant homeostasis. With this knowledge more effective diagnostic tests (e.g. anti-GM-CSF antibody) and therapies for PAP are under investigation.


American Journal of Respiratory Cell and Molecular Biology | 2011

Novel Murine Model of Chronic Granulomatous Lung Inflammation Elicited by Carbon Nanotubes.

Isham Huizar; Anagha Malur; Yasmeen A. Midgette; Cindy Kukoly; Pengyu Chen; Pu Chun Ke; Ramakrishna Podila; Apparao M. Rao; Christopher J. Wingard; Larry Dobbs; Barbara P. Barna; Mani S. Kavuru; Mary Jane Thomassen

Lung granulomas are associated with numerous conditions, including inflammatory disorders, exposure to environmental pollutants, and infection. Osteopontin is a chemotactic cytokine produced by macrophages, and is implicated in extracellular matrix remodeling. Furthermore, osteopontin is up-regulated in granulomatous disease, and osteopontin null mice exhibit reduced granuloma formation. Animal models currently used to investigate chronic lung granulomatous inflammation bear a pathological resemblance, but lack the chronic nature of human granulomatous disease. Carbon nanoparticles are generated as byproducts of combustion. Interestingly, experimental exposures to carbon nanoparticles induce pulmonary granuloma-like lesions. However, the recruited cellular populations and extracellular matrix gene expression profiles within these lesions have not been explored. Because of the rapid resolution of granulomas in current animal models, the mechanisms responsible for persistence have been elusive. To overcome the limitations of previous models, we investigated whether a model using multiwall carbon nanoparticles would resemble chronic human lung granulomatous inflammation. We hypothesized that pulmonary exposure to multiwall carbon nanoparticles would induce granulomas, elicit a macrophage and T-cell response, and mimic other granulomatous disorders with an up-regulation of osteopontin. This model demonstrates: (1) granulomatous inflammation, with macrophage and T-cell infiltration; (2) resemblance to the chronicity of human granulomas, with persistence up to 90 days; and (3) a marked elevation of osteopontin, metalloproteinases, and cell adhesion molecules in granulomatous foci isolated by laser-capture microdissection and in alveolar macrophages from bronchoalveolar lavage. The establishment of such a model provides an important platform for mechanistic studies on the persistence of granuloma.


Respiratory Research | 2012

Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis

Anagha Malur; Mani S. Kavuru; Irene Marshall; Barbara P. Barna; Isham Huizar; Reema Karnekar; Mary Jane Thomassen

RationalePulmonary Alveolar Proteinosis (PAP) patients exhibit an acquired deficiency of biologically active granulocyte-macrophage colony stimulating factor (GM-CSF) attributable to GM-CSF specific autoantibodies. PAP alveolar macrophages are foamy, lipid-filled cells with impaired surfactant clearance and markedly reduced expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) and the PPARγ-regulated ATP binding cassette (ABC) lipid transporter, ABCG1. An open label proof of concept Phase II clinical trial was conducted in PAP patients using rituximab, a chimeric murine-human monoclonal antibody directed against B lymphocyte specific antigen CD20. Rituximab treatment decreased anti-GM-CSF antibody levels in bronchoalveolar lavage (BAL) fluid, and 7/9 patients completing the trial demonstrated clinical improvement as measured by arterial blood oxygenation.ObjectivesThis study sought to determine whether rituximab therapy would restore lipid metabolism in PAP alveolar macrophages.MethodsBAL samples were collected from patients pre- and 6-months post-rituximab infusion for evaluation of mRNA and lipid changes.ResultsMean PPARγ and ABCG1 mRNA expression increased 2.8 and 5.3-fold respectively (p ≤ 0.05) after treatment. Lysosomal phospholipase A2 (LPLA2) (a key enzyme in surfactant degradation) mRNA expression was severely deficient in PAP patients pre-treatment but increased 2.8-fold post-treatment. In supplemental animal studies, LPLA2 deficiency was verified in GM-CSF KO mice but was not present in macrophage-specific PPARγ KO mice compared to wild-type controls. Oil Red O intensity of PAP alveolar macrophages decreased after treatment, indicating reduced intracellular lipid while extracellular free cholesterol increased in BAL fluid. Furthermore, total protein and Surfactant protein A were significantly decreased in the BAL fluid post therapy.ConclusionsReduction in GM-CSF autoantibodies by rituximab therapy improves alveolar macrophage lipid metabolism by increasing lipid transport and surfactant catabolism. Mechanisms may involve GM-CSF stimulation of alveolar macrophage ABCG1 and LPLA2 activities by distinct pathways.


Surgery | 2012

Alveolar macrophage activation in obese patients with obstructive sleep apnea

Sunil Sharma; Anagha Malur; Irene Marshall; Isham Huizar; Barbara P. Barna; Walter J. Pories; Lynis Dohm; Mani S. Kavuru; Mary Jane Thomassen

BACKGROUND Classically, activated macrophages in adipose tissue, liver, and muscle have been implicated in many conditions associated with obesity, including insulin resistance and the metabolic syndrome. Despite numerous pulmonary comorbidities and the sentinel role alveolar macrophages play in innate immunity and lung homeostasis, their activation status has not been examined in these patients. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) has been shown to be a negative regulator of inflammation in addition to regulating lipid and glucose metabolism. PPAR-γ is expressed constitutively in healthy alveolar macrophages and decreased on activation. We hypothesized that PPAR-γ would be downregulated in alveolar macrophages from obese patients with obstructive sleep apnea (OSA) in the absence of overt lung disease. METHODS Alveolar macrophages were obtained by bronchoalveolar lavage from obese individuals with and without OSA and healthy controls. RESULTS Data indicated that PPAR-γ functional activity was decreased by 48% in obese with OSA and 26% without OSA (P < .05). In obese patients with OSA, PPAR-γ mRNA was decreased 2-fold compared with controls (P < .05), whereas obese patients without OSA, it was not different. Regardless of OSA, alveolar macrophages of obese patients demonstrated increased interleukin-6 mRNA. CONCLUSION These findings are consistent with the presence of classic macrophage activation and an inflammatory lung environment. Data from this study suggest that alveolar macrophage dysfunction becomes aggravated in OSA and may increase pulmonary disease susceptibility.


Respiratory Research | 2013

The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation

Isham Huizar; Anagha Malur; Janki Patel; Matthew McPeek; Larry Dobbs; Christopher J. Wingard; Barbara P. Barna; Mary Jane Thomassen

BackgroundAlthough granulomatous inflammation is a central feature of many disease processes, cellular mechanisms of granuloma formation and persistence are poorly understood. Carbon nanoparticles, which can be products of manufacture or the environment, have been associated with granulomatous disease. This paper utilizes a previously described carbon nanoparticle granuloma model to address the issue of whether peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear transcription factor and negative regulator of inflammatory cytokines might play a role in granulomatous lung disease. PPARγ is constitutively expressed in alveolar macrophages from healthy individuals but is depressed in alveolar macrophages of patients with sarcoidosis, a prototypical granulomatous disease. Our previous study of macrophage-specific PPARγ KO mice had revealed an intrinsically inflammatory pulmonary environment with an elevated pro-inflammatory cytokines profile as compared to wild-type mice. Based on such observations we hypothesized that PPARγ expression would be repressed in alveolar macrophages from animals bearing granulomas induced by MWCNT instillation.MethodsWild-type C57Bl/6 and macrophage-specific PPARγ KO mice received oropharyngeal instillations of multiwall carbon nanotubes (MWCNT) (100 μg). Bronchoalveolar lavage (BAL) cells, BAL fluids, and lung tissues were obtained 60 days post-instillation for analysis of granuloma histology and pro-inflammatory cytokines (osteopontin, CCL2, and interferon gamma [IFN-γ] mRNA and protein expression.ResultsIn wild-type mice, alveolar macrophage PPARγ expression and activity were significantly reduced in granuloma-bearing animals 60 days after MWCNT instillation. In macrophage-specific PPARγ KO mice, granuloma formation was more extensive than in wild-type at 60 days after MWCNT instillation. PPARγ KO mice also demonstrated elevated pro-inflammatory cytokine expression in lung tissue, laser-microdissected lung granulomas, and BAL cells/fluids, at 60 days post MWCNT exposure.ConclusionsOverall, data indicate that PPARγ deficiency promotes inflammation and granuloma formation, suggesting that PPARγ functions as a negative regulator of chronic granulomatous inflammation.


Biochemical and Biophysical Research Communications | 2011

Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice.

Anagha Malur; Isham Huizar; Greg Wells; Barbara P. Barna; Achut G. Malur; Mary Jane Thomassen

We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p=0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice but improved significantly after lenti-ABCG1 treatment. Data demonstrate that in vivo instillation of lenti-ABCG1 in GM-CSF KO mice is sufficient to restore pulmonary homeostasis by: (1) upregulating ABCG1; (2) reducing intra and extracellular lipids; and (3) improving lung function. Results suggest that the ABCG1 lipid transporter is the key downstream target of GM-CSF-induced PPARγ necessary for surfactant catabolism.

Collaboration


Dive into the Isham Huizar's collaboration.

Top Co-Authors

Avatar

Anagha Malur

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Barbara P. Barna

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mani S. Kavuru

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Irene Marshall

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Larry Dobbs

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reema Karnekar

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Janki Patel

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge