Ishwar Chandra Yadav
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ishwar Chandra Yadav.
Science of The Total Environment | 2015
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jabir Hussain Syed; Zhineng Cheng; Jun Li; Gan Zhang; Kevin C. Jones
Though the use of pesticides has offered significant economic benefits by enhancing the production and yield of food and fibers and the prevention of vector-borne diseases, evidence suggests that their use has adversely affected the health of human populations and the environment. Pesticides have been widely distributed and their traces can be detected in all areas of the environment (air, water and soil). Despite the ban of DDT and HCH in India, they are still in use, both in domestic and agricultural settings. In this comprehensive review, we discuss the production and consumption of persistent organic pesticides, their maximum residual limit (MRL) and the presence of persistent organic pesticides in multicomponent environmental samples (air, water and soil) from India. In order to highlight the global distribution of persistent organic pesticides and their impact on neighboring countries and regions, the role of persistent organic pesticides in Indian region is reviewed. Based on a review of research papers and modeling simulations, it can be concluded that India is one of the major contributors of global persistent organic pesticide distribution. This review also considers the health impacts of persistent organic pesticides, the regulatory measures for persistent organic pesticides, and the status of Indias commitment towards the elimination of persistent organic pesticides.
Chemosphere | 2016
Ningombam Linthoingambi Devi; Ishwar Chandra Yadav; Qi Shihua; Yang Dan; Gan Zhang; Priyankar Raha
The Indian Himalayan Region (IHR) is one of the important mountain ecosystems among the global mountain system which support wide variety of flora, fauna, human communities and cultural diversities. Surface soil samples (n = 69) collected from IHR were analysed for 16 priority polycyclic aromatic hydrocarbons (PAH) listed by USEPA. The ∑16PAH concentration in surface soil ranged from 15.3 to 4762 ngg(-1) (mean 458 ngg(-1)). The sum total of low molecular weight PAH (∑LMW-PAHs) (mean 74.0 ngg(-1)) were relatively lower than the high molecular weight PAH (∑HMW-PAHs) (mean 384 ngg(-1)). The concentration of eight carcinogenic PAHs (BaA, CHR, BbF, BkF, BaP, DahA, IcdP, BghiP) were detected high in mountain soil from IHR and ranged from 0.73 to 2729 ngg(-1) (mean 272 ngg(-1)). Based on spatial distribution map, high concentration of HMW- and LMW-PAHs were detected at GS1 site in Guwahati (615 and 4071 ngg(-1)), and lowest concentration of HMW-PAHs were found at IS6 in Itanagar (5.80 ngg(-1)) and LMW-PAHs at DS2 (17.3 ngg(-1)) in Dibrugarh. Total organic carbon (TOC) in mountain soil was poorly connected with ∑PAHs (r(2) = 0.072) and Car-PAHs (r(2) = 0.048), suggesting the little role of TOC in adsorption of PAHs. Isomeric ratio of PAHs showed the source of PAH contamination in IHR is mixed of petrogenic and pyrogenic origin and was affirmed by PAHs composition profile. These source apportionment results were further confirmed by principal component analysis (PCA). Eco-toxicological analysis showed the calculated TEQ for most carcinogenic PAH were 2-4 times more than the Dutch allowed limit, while TEQ of BaP was 25 times high, suggesting increasing trend of carcinogenicity of surface soil.
Science of The Total Environment | 2016
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jun Li; Gan Zhang; Pawan Raj Shakya
Nepal is a landlocked country located between worlds two most populous countries-India and China where high level of organochlorines pesticides has been reported from multi-environmental matrices. In this study, we investigated the occurrence, distributions and profile of selected OCP chemicals in surface soil samples (N=72) from four major cities of Nepal. Overall, the sum of total OCPs in soil ranged from 20 to 250ng/g with Biratnagar being the most polluted site in Nepal. DDTs and endosulfans were the most abundant OCP chemicals in soil samples. The concentration of DDTs ranged from 8 to 230ng/g, 8-56ng/g, 8-63ng/g, and 8-27ng/g in surface soil, while endosulfans were in the range of 2.9-3.3ng/g, 2.8-8.7ng/g, 2.8-3.4ng/g, 2.8-3.2ng/g in Biratnagar, Kathmandu, Pokhara and Birgunj, respectively. The isomeric ratio of DDT and their metabolites suggested the ongoing usages of technical DDT as well as dicofol in this region. Lower ratio of α/β-endosulfan indicated past application of endosulfans in Nepal. HCHs were less detected OCPs in soil sample accounting only 4-9% of ∑OCPs. The isomeric ratio of α-/γ-HCH indicated that the HCHs may be originated from mixed source of technical HCH as well as lindane use. Scattered plot of TOC and BC showed they were weakly and positively related with concentration of OCPs in soil. Health risk assessment modeling study of OCPs in soil suggested moderate cancer risk with ingestion being the most potential pathway of OCPs exposure.
Environmental Pollution | 2017
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jun Li; Jabir Hussain Syed; Gan Zhang; Hirozumi Watanabe
Although, many biomass burning (BB) emissions products (particulate matter and trace gases) are believed to be trans-boundary pollutants that originates from India and China (the two most populous countries in Asia), the information about BB emission and related contents is limited for Indo-China Peninsula (ICP) region. This motivated us to review this region pertaining to BB emission. The main objective of the review is to document the current status of BB emission in ICP region. In order to highlight the impact of BB on regional air quality and global climate change, the role of BB emission in ICP region is also discussed. Based on the available literature and modeling simulations studies, it is evidenced that ICP is one of the hotspot regional source for aerosols in terms of BB emissions. In addition, regional emissions through BB have significant implications for regional air quality especially in the neighboring countries such as China, Taiwan and India. Our assessment highlight that there is still a general lack of reliable data and research studies addressing BB related issues in context of environmental and human health. There is therefore a critical need to improve the current knowledge base, which should build upon the research experience and further research into these issues is considered vital to help inform future policies/control strategies.
Science of The Total Environment | 2018
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jun Li; Gan Zhang; Adrian Covaci
Despite the fact that soil and sediments, which act as a sink or potential source of organic pollutants, have been polluted with organophosphate esters (OPEs) around the globe, extremely constrained data is accessible on environmental concentration and fate of OPEs in solid matrices in whole of the South Asia particularly if there should be an occurrence in Nepal. In this study, surface soil (N=19) and sediments samples (N=20) were analyzed for eight different OPE in Kathmandu Valley during October 2014. The concentration of ∑8OPE measured in sediments samples was 12 times higher than soil and ranged 983-7460ng/g dw (median 2210ng/g dw) and 65-27,500ng/g dw (186ng/g dw), respectively. TMPP was most abundant in soil followed by TCIPP, TEHP and EHDPHP and ranged 17-25,300ng/g dw (41.3ng/g dw), 11.2-911ng/g dw (31.7ng/g dw), 8.52-858ng/g dw (26.1ng/g dw) and 10.2-114ng/g dw (25.6ng/g dw), respectively. TEHP was most prevalent in sediments followed by TMPP and EHDPHP and were in the range of 657-3020ng/g dw (median 1140ng/g dw), 267-2630ng/g dw (median 815g/g dw), 34-418ng/g (median 131ng/g dw), respectively. The sources of the high level of OPEs in soil was related to the end point use of consumer materials, traffic emission, and close proximity to commercial and industrial areas; while domestic sewage discharges and effluents from carpet industry were identified as the possible entry of OPE in sediments. Total organic carbon (TOC) and black carbon (BC) content in soil were moderately and positively correlated with ∑8OPE indicating more or less influence of soil organic carbon. The health risk assessment suggested dermal absorption of OPEs via soil is the primary pathway of human exposure to the general population. The significantly high-risk quotient (RQ) estimated for ∑8OPEs especially TMPP and TPHP suggested significant potential adverse risk for aquatic organisms.
Ecotoxicology and Environmental Safety | 2017
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jun Li; Gan Zhang
Regardless of the ban on the polychlorinated biphenyls (PCBs) decade ago, significant measures of PCBs are still transmitted from essential sources in cities and are all inclusive ecological contaminants around the world. In this study, the concentrations of PCBs in soil, the air-soil exchange of PCBs, and the soil-air partitioning coefficient (KSA) of PCBs were investigated in four noteworthy urban areas in Nepal. Overall, the concentrations of ∑30PCBs ranged from 10 to 59.4ng/g dry weight; dw (mean 12.2ng/g ±11.2ng/g dw). The hexa-CBs (22-31%) was most dominant among several PCB-homologues, followed by tetra-CBs (20-29%), hepta-CBs (12-21%), penta-CBs (15-17%) and tri-CBs (9-19%). The sources of elevated level of PCBs discharge in Nepalese soil was identified as emission from transformer oil, lubricants, breaker oil, cutting oil and paints, and cable insulation. Slightly strong correlation of PCBs with TOC than BC demonstrated that amorphous organic matter (AOM) assumes a more critical part in holding of PCBs than BC in Nepalese soil. The fugacity fraction (ff) results indicated the soil being the source of PCB in air through volatilization and net transport from soil to air. The soil-air partitioning coefficient study suggests the absorption by soil organic matter control soil-air partitioning of PCBs. Slightly weak but positive correlation of measured Log KSA with Log KOA (R2 = 0.483) and Log KBC-A (R2 = 0.438) suggests that both Log KOA and Log KBC-A can predict soil-air partitioning to lesser extent for PCBs.
Reviews of Environmental Contamination and Toxicology | 2016
Naima Hamid; Jabir Hussain Syed; Atif Kamal; Faiqa Aziz; Sundas Tanveer; Usman Ali; Alessandra Cincinelli; Athanasios Katsoyiannis; Ishwar Chandra Yadav; Jun Li; Riffat Naseem Malik; Gan Zhang
Polycyclic aromatic hydrocarbons (PAHs) are consistently posing high risks to human/biota in developing countries of South Asia where domestic areas are exposed to biomass burning and commercial/industrial activities. This review article summarized the available data on PAHs occurrence, distribution, potential sources and their possible risks in the key environmental matrices (i.e., Air, Soil/Sediments, Water) from South Asian Region (SAR). Available literature reviewed suggested that PAHs concentration levels were strongly influenced by the monsoonal rainfall system in the region and it has been supported by many studies that higher concentrations were measured during the winter season as compared to summer. Biomass burning (household and brick kilns activities), open burning of solid wastes and industrial and vehicular emissions were categorized as major sources of PAHs in the region. Regional comparison revealed that the contamination levels of PAHs in the water bodies and soil/sediments in SAR remained higher relatively to the reports from other regions of the world. Our findings highlight that there is still a general lack of reliable data, inventories and research studies addressing PAHs related issues in the context of environmental and human health in SAR. There is therefore a critical need to improve the current knowledge base, which should build upon the research experience from other regions which have experienced similar situations in the past. Further research into these issues in South Asia is considered vital to help inform future policies/control strategies as already successfully implemented in other countries.
Science of The Total Environment | 2018
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jun Li; Gan Zhang
Urban centers have turned to be the provincial store for resource consumptions and source releases of different types of semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), bringing about boundless environmental pollutions, among different issues. Human prosperity inside urban communities is unambiguously dependent on the status of urban soils and house dusts. However, environmental occurrence and sources of release of these SVOCs are challenging in Nepalese cities, as exceptionally very limited data are accessible. This motivated us to explore the environmental fate, their source/sink susceptibilities and health risk associated with PAHs. In this study, we investigated the contamination level, environmental fate and sources/sink of 16 EPAs priority pollutants in surface soil and house dusts from four major cities of Nepal. Additionally, the toxicological effect of individual PAH was studied to assess the health risk of PAHs. Generally, the concentrations of ∑16PAHs in surface soil were 1.5 times higher than house dust, and ranged 767-6770ng/g dry weight (dw) (median 1810ng/g dw), and 747-4910 dw (median 1320ng/g dw), respectively. High molecular weight-PAHs both in soil and dust were more abundant than low molecular weight-PAHs, suggesting the dominance of pyrogenic source. Moderate to weak correlation of TOC and BC with PAHs in soil and dust suggested little or no role of soil organic carbon in sorption of PAHs. Source diagnostic ratio and principal component analysis indicated fossil fuel combustion, traffic/vehicular emissions and combustion of biomass are the principal sources of PAHs contamination in Nepalese urban environment. The high average TEQ value of PAHs in soil than dust suggested high risk of soil carcinogenicity compared to dust.
Scientific Reports | 2017
Jabir Hussain Syed; Mehreen Iqbal; Guangcai Zhong; Athanasios Katsoyiannis; Ishwar Chandra Yadav; Jun Li; Gan Zhang
Previous studies reported that forest ecosystems can play a vital role in scavenging anthropogenic polycyclic aromatic hydrocarbons (PAHs) and act as primary reservoirs of these environmental pollutants. The present study aimed to investigate the occurrence, spatial pattern and source apportionment of PAHs across Chinese background forest soils (O- & A-horizons). The 143 soils collected from 30 mountains showed significantly (p < 0.05) higher levels of ∑15PAHs (ng g−1 dw) in O-horizon (222 ± 182) than A-horizon (168 ± 161). A progressive increase in the levels of lighter PAHs was observed along altitudinal gradient, however heavier PAHs did not show any variations. Carbon contents (TOC & BC) of forest soils were found weakly correlated (p < 0.01) with low molecular weight (LMW)-PAHs but showed no relation with high molecular weight (HMW)-PAHs. Source apportionment results using PMF and PCA revealed that PAHs in forest soils mainly come from local biomass burning and/or coal combustion and attributed that forest soils may become a potential sink for PAHs in the region.
Environmental Pollution | 2018
Ishwar Chandra Yadav; Ningombam Linthoingambi Devi; Jun Li; Gan Zhang
While various investigations have been driven on polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) in different framework around the world, information about contamination and fate of PBDEs and other FRs in developing countries especially in the Indian subcontinent is uncommon. Nepal being located in the Indian subcontinent, very little is known about contamination level of semi-volatile organic pollutants discharged into the environment. This motivated us to investigate the environmental fate of halogenated flame retardant (HFRs) in Nepalese condition. In this study, we investigated the concentration, fate, and sources of 9 PBDEs, 2 dechlorane plus isomers (DPs), and 6 novel brominated flame retardants (NBFRs). Moreover, air-soil exchange and soil-air partitioning were also evaluated to characterize the pattern of air-soil exchange and environmental fate. In general, the concentrations of NBFRs in soil were more prevalent than PBDEs and DPs, and accounted 95% of ∑HFRs. By and large, the concentrations of NBFRs and DPs were measured high in Kathmandu, while PBDEs level exceeded in Pokhara. Principal component analysis (PCA) study suggested contributions from commercial penta-, octa-, and deca-BDEs products and de-bromination of highly brominated PBDEs as the significant source of PBDEs. Likewise, low fanti ratio suggested DPs in soil might have originated from long-range atmospheric transport from remote areas, while high levels of decabromodiphenyl ethane (DBDPE) in soil were linked with the use of wide varieties of consumer products. The estimated fugacity fraction (ff) for individual HFR was quite lower (<0.05) than equilibrium value, suggesting that deposition and net transport from air to the soil is overwhelming. Soil-air partitioning study revealed neither octanol-air partition coefficient (KOA) nor black carbon partition coefficient (KBC-A) is an appropriate surrogate for soil organic matter (SOM), subsequently, absorption by SOM has no or little role in the partitioning of HFRs.