Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isidro E. Zarraga is active.

Publication


Featured researches published by Isidro E. Zarraga.


Biophysical Journal | 2014

Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and Its Implications to Solution Viscosity

Eric J. Yearley; Paul Douglas Godfrin; Tatiana Perevozchikova; Hailiang Zhang; Peter Falus; Lionel Porcar; Michihiro Nagao; Joseph E. Curtis; Pradad Gawande; Rosalynn Taing; Isidro E. Zarraga; Norman J. Wagner; Yun Liu

Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions.


Biophysical Journal | 2013

Small-Angle Neutron Scattering Characterization of Monoclonal Antibody Conformations and Interactions at High Concentrations

Eric J. Yearley; Isidro E. Zarraga; Steven J. Shire; Thomas M. Scherer; Yatin R. Gokarn; Norman J. Wagner; Yun Liu

Small-angle neutron scattering (SANS) is used to probe the solution structure of two protein therapeutics (monoclonal antibodies 1 and 2 (MAb1 and MAb2)) and their protein-protein interaction (PPI) at high concentrations. These MAbs differ by small sequence alterations in the complementarity-determining region but show very large differences in solution viscosity. The analyses of SANS patterns as a function of different solution conditions suggest that the average intramolecular structure of both MAbs in solution is not significantly altered over the studied protein concentrations and experimental conditions. Even though a strong repulsive interaction is expected for both MAbs due to their net charges and low solvent ionic strength, analysis of the SANS data shows that the effective PPI for MAb1 is dominated by a very strong attraction at small volume fraction that becomes negligible at large concentrations. The MAb1 PPI cannot be modeled simply by a spherically symmetric central forces model. It is proposed that an anisotropic attraction strongly affects the local interprotein structure and leads to an anomalously large viscosity of concentrated MAb1 solutions. Conversely, MAb2 displays a repulsive interaction potential throughout the concentration series probed and a comparatively small solution viscosity.


Journal of Physical Chemistry B | 2012

Coarse-grained modeling of the self-association of therapeutic monoclonal antibodies.

Anuj Chaudhri; Isidro E. Zarraga; Tim J. Kamerzell; J. Paul Brandt; Thomas W. Patapoff; Steven J. Shire; Gregory A. Voth

Coarse-grained computational models of two therapeutic monoclonal antibodies are constructed to understand the effect of domain-level charge-charge electrostatics on the self-association phenomena at high protein concentrations. The coarse-grained representations of the individual antibodies are constructed using an elastic network normal-mode analysis. Two different models are constructed for each antibody for a compact Y-shaped and an extended Y-shaped configuration. The resulting simulations of these coarse-grained antibodies that interact through screened electrostatics are done at six different concentrations. It is observed that a particular monoclonal antibody (hereafter referred to as MAb1) forms three-dimensional heterogeneous structures with dense regions or clusters compared to a different monoclonal antibody (hereafter referred to as MAb2) that forms more homogeneous structures (no clusters). These structures, together with the potential mean force (PMF) and radial distribution functions (RDF) between pairs of coarse-grained regions on the MAbs, are qualitatively consistent with the experimental observation that MAb1 has a significantly higher viscosity compared to MAb2, especially at concentrations >50 mg/mL, even though the only difference between the MAbs lies with a few amino acids at the antigen-binding loops (CDRs). It is also observed that the structures in MAb1 are formed due to stronger Fab-Fab interactions in corroboration with experimental observations. Evidence is also shown that Fab-Fc interactions can be equally important in addition to Fab-Fab interactions. The coarse-grained representations are effective in picking up differences based on local charge distributions of domains and make predictions on the self-association characteristics of these protein solutions. This is the first computational study of its kind to show that there are differences in structures formed by two different monoclonal antibodies at high concentrations.


Journal of Physical Chemistry B | 2013

The role of amino acid sequence in the self-association of therapeutic monoclonal antibodies: insights from coarse-grained modeling.

Anuj Chaudhri; Isidro E. Zarraga; Sandeep Yadav; Thomas W. Patapoff; Steven J. Shire; Gregory A. Voth

Coarse-grained computational models of therapeutic monoclonal antibodies and their mutants can be used to understand the effect of domain-level charge-charge electrostatics on the self-association phenomena at high protein concentrations. The coarse-grained models are constructed for two antibodies at different coarse-grained resolutions by using six different concentrations. It is observed that a particular monoclonal antibody (hereafter referred to as MAb1) forms three-dimensional heterogeneous structures with dense regions or clusters compared to a different monoclonal antibody (hereafter referred to as MAb2) that forms homogeneous structures without clusters. The potential of mean force (PMF) and radial distribution functions (RDF) plots for the mutants (hereafter referred to as M1, M5, M7, and M10) show trends consistent with previously reported experimental observation of viscosities. The mutant referred to as M6 shows strongly attractive interactions that are consistent with previously reported negative second virial coefficients (B(22)) obtained from light-scattering experiments (Yadav et al. Pharm. Res. 2011, 28, 1750-1764; Yadav et al. Mol. Pharmaceutics. 2012, 9, 791-802). Clustering data on MAb1 reveal a small number of large clusters that are hypothesized to be the reason for the high experimental viscosity. This is in contrast with M6 (that differs from MAb1 in only a few amino acids), where cluster analysis reveals the formation of a large number of smaller clusters that is hypothesized to be the reason for the observed lower viscosity. The coarse-grained representations are effective in picking up differences based on local charge distributions of domains to make predictions on the self-association characteristics of these protein solutions.


Journal of Pharmaceutical Sciences | 2013

High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies

Isidro E. Zarraga; Rosalynn Taing; Jonathan Zarzar; Jacob Luoma; Jenny Hsiung; Ankit R. Patel; Fredric J. Lim

The high shear rheology of three concentrated solutions of immunoglobulin G1 monoclonal antibodies (mAb1, mAb2, and mAb3), differing only in their complementarity determining regions, was characterized using rotary and capillary rheometry. The more viscous solutions (mAb1 and mAb3) showed non-Newtonian behavior at high shear rates exhibiting both shear thinning and appreciable normal stress differences (NSDs) in the shear rate range γ = 10 to 10(4) s(-1) . The rheograms were retraced after γ is increased and decreased, suggesting reversible self-associations under shear. In contrast, mAb2 solutions showed Newtonian behavior up to γ = 6 × 10(4) s(-1) . The critical shear stress τc , corresponding to the onset of the reduction in the viscosity η, is a measure of mAb equilibrium cluster strength and increased rapidly with concentration for the high viscosity mAb solutions above 100 mg/mL. In addition, decreasing the temperature from 20°C to 5°C increased η at low γ, but shear-thinning was enhanced and its onset occurred at a lower γc . Using an Arrhenius model η = A exp(Ea /kT), the activation energy for viscous flow Ea was found to decrease for mAb1 solutions as γ was increased from 10 to 10(4) s(-1) , suggesting mAb cluster disruption or rearrangement under shear. In contrast, for mAb2, this Ea remained constant in the γ range. Finally, mAb1 and mAb3 solutions showed appreciable NSDs, with their N1 > 0 scaling linearly with γ in the range 10(3) to 10(4) s(-1) , whereas their |N2 /N1 | was less than 0.25 in this region. These suggest anisotropy and deformation of their solution microstructure toward the extensional quadrant of the flow at high γ. In contrast, the NSDs for mAb2 were close to zero indicating that the solution microstructure under shear is practically isotropic.


Journal of Physical Chemistry B | 2016

Effect of Hierarchical Cluster Formation on the Viscosity of Concentrated Monoclonal Antibody Formulations Studied by Neutron Scattering.

P. Douglas Godfrin; Isidro E. Zarraga; Jonathan Zarzar; Lionel Porcar; Peter Falus; Norman J. Wagner; Yun Liu

Recently, reversible cluster formation was identified as an underlying cause of anomalously large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations, which poses a major challenge to the use of subcutaneous injection for some mAbs. A fundamental understanding of the structural and dynamic origins of high viscosities in concentrated mAb solutions is thus of significant relevance to mAb applications in human health care, as well as being of scientific interest. Herein, we present a detailed investigation of an IgG1-based mAb to relate the short-time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. The combination of light scattering, small-angle neutron scattering, and neutron spin echo measurement techniques conclusively demonstrates that, upon addition of Na2SO4, these antibodies form strongly bound reversible dimers at dilute concentrations that interact with each other to form large, loosely bound, transient clusters when concentrated. This hierarchical structure formation in solution causes a significant increase in the solution viscosity.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions.

Andrea Allmendinger; Stefan Fischer; Joerg Huwyler; Hanns-Christian Mahler; Edward Schwarb; Isidro E. Zarraga; Robert Mueller

Development of injection devices for subcutaneous drug administration requires a detailed understanding of user capability and forces occurring during the drug administration process. Injection forces of concentrated protein therapeutics are influenced by syringe properties (e.g., needle diameter) and injection speed, and are driven by solution properties such as rheology. In the present study, it is demonstrated that concentrated protein therapeutics may show significantly reduced injection forces because of shear-thinning (non-Newtonian) behavior. A mathematical model was thus established to predict/correlate injection forces of Newtonian and non-Newtonian solutions with viscosity data from plate/cone rheometry. The model was verified experimentally by glide-force measurements of reference and surrogate solutions. Application of the suggested model was demonstrated for injection force measurements of concentrated protein solutions to determine viscosity data at high shear rates (3 × 10(4)-1.6 × 10(5)s(-1)). By combining these data with viscosity data obtained by different viscosity methods (plate/cone and capillary rheometry), a viscosity-shear rate profile of the protein solution between 10(2) and 1.6 × 10(5)s(-1) was obtained, which was mathematically described by the Carreau model. Characterization of rheological properties allows to accurately predict injection forces for different syringe-needle combinations as well as injection rates, thus supporting the development of injection devices for combination products.


Journal of Dermatological Treatment | 2009

A pharmaceutical comparison of different commercially available imiquimod 5% cream products

Lester I. Harrison; Jim D. Stoesz; John L. Battiste; Robert J. Nelson; Isidro E. Zarraga

Background: Alternatives to the innovator product for imiquimod 5% cream are currently marketed in South America and the Peoples Republic of China. Methods: Seven alternative imiquimod 5% cream products were compared with the innovator product using physiochemical tests for cream appearance, pH, drug content and presence of crystals, as well as in vitro release testing of drug using Franz diffusion cells. Results: In contrast to the innovator product, which had no crystalline imiquimod, significant amounts of suspended crystalline imiquimod were found in six of the seven alternative products. In vitro release rates of imiquimod were significantly slower in these six products compared with the innovator (p < 0.001). In vitro release rates of imiquimod were significantly faster than the innovator (p < 0.05) for the one alternative product without crystals. Conclusions: The clinical relevance of the differences observed is unknown; however, they raise concerns about whether these alternatives are therapeutically equivalent. While a generic topical imiquimod would almost certainly require clinical studies of therapeutic equivalence for approval in countries with more stringent regulatory environment, vigilance is warranted regarding importation of pharmaceutical products labeled as ‘identical’ in the absence of adequate evaluations.


Journal of Physical Chemistry B | 2014

Molecular Simulations of the Pairwise Interaction of Monoclonal Antibodies

Mauro Lapelosa; Thomas W. Patapoff; Isidro E. Zarraga

Molecular simulations are employed to compute the free energy of pairwise monoclonal antibodies (mAbs) association using a conformational sampling algorithm with a scoring function. The work reported here is aimed at investigating the mAb-mAb association driven by weak interactions with a computational method capable of predicting experimental observations of low binding affinity. The simulations are able to explore the free energy landscape. A steric interaction component, electrostatic interactions, and a nonpolar component of the free energy form the energy scoring function. Electrostatic interactions are calculated by solving the Poisson-Boltzmann equation. The nonpolar component is derived from the van der Waals interactions upon close contact of the protein surfaces. Two mAbs with similar IgG1 framework but with small sequence differences, mAb1 and mAb2, are considered for their different viscosity and propensity to form a weak interacting dimer. mAb1 presents favorable free energy of association at pH 6 with 15 mM of ion concentration reproducing experimental trends of high viscosity and dimer formation at high concentration. Free energy landscape and minimum free energy configurations of the dimer, as well as the second virial coefficient (B22) values are calculated. The energy distributions for mAb1 are obtained, and the most probable configurations are seen to be consistent with experimental measurements. In contrast, mAb2 shows an unfavorable average free energy at the same buffer conditions due to poor electrostatic complementarity, and reversible dimer configurations with favorable free energy are found to be unlikely. Finally, the simulations of the mAb association dynamics provide insights on the self-association responsible for bulk solution behavior and aggregation, which are important to the processing and the quality of biopharmaceuticals.


Biophysical Chemistry | 2016

Molecular simulations of micellar aggregation of polysorbate 20 ester fractions and their interaction with N-phenyl-1-naphthylamine dye

Mauro Lapelosa; Thomas W. Patapoff; Isidro E. Zarraga

Micellar aggregation behavior of polysorbate 20 (PS20) has generated significant interest because of the wide use of PS20 as a surfactant to minimize protein surface adsorption and mitigate protein aggregation. Thus, there is a need for better molecular understanding of what drives the biophysical behavior of PS20 in solution. We observe that a complex amphipathic PS20 molecule, which contains both hydrophobic tail and relatively large hydrophilic head, self-associates strongly within the course of a molecular dynamics simulation performed with a fully atomistic representation of the molecule and an explicit water solvent model. The in silico behavior is consistent with micellar models of PS20 in solution. The dynamics of this self-association is rather complex involving both internal reorganization of the molecule and diffusion to form stable micelle-like aggregates. The micellar aggregates of PS20 are long-lived and are formed by the balance between the large hydrophobic interactions associated with the aliphatic tail of PS20, and the steric repulsion of the hydrophilic sorbitan head structure. In the present work, molecular models of PS20 that represent naturally occurring PS20 fractions were produced and characterized in silico. The study investigated the monoester and diester fractions: PS20M, and PS20D. These fractions present differences in the strength of their hydrophobic effect, which influences the aggregation behavior. Adaptive biasing force (ABF) simulations were carried out with the PS20M and PS20D molecular constructs to calculate the free energy of their pairwise interaction. The free energy barrier for the dissociation is higher for PS20D compared with PS20M. The results show that hydrogen bonds can form when head groups are in close proximity, such as in the PS20 aggregate assembly, and the free energy of interaction can be used to predict the morphology of the micellar aggregate for the different PS20 fractions. We were also able to simulate PS20 in the presence of N-phenyl-1-naphthylamine (NPN) to study the solution behavior of the hydrophobic molecule and of the mechanism in which it is sequestered in the hydrophobic core of the PS20 micellar aggregate.

Collaboration


Dive into the Isidro E. Zarraga's collaboration.

Top Co-Authors

Avatar

Yun Liu

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel Porcar

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Falus

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Yearley

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge