Ismini E. Papageorgiou
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ismini E. Papageorgiou.
Journal of Cerebral Blood Flow and Metabolism | 2014
Oliver Kann; Ismini E. Papageorgiou; Andreas Draguhn
Gamma oscillations (~30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency (‘fast-spiking’) and synchronize the activity of numerous pyramidal cells by rhythmic inhibition (‘clockwork’). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited (‘interneuron energy hypothesis’). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimers disease, and schizophrenia.
Immunity | 2016
Thomas Blank; Claudia N. Detje; Alena Spieß; Nora Hagemeyer; Stefanie M. Brendecke; Jakob Wolfart; Ori Staszewski; Tanja Zöller; Ismini E. Papageorgiou; Justus Schneider; Ricardo Paricio-Montesinos; Ulrich Eisel; Denise Manahan-Vaughan; Stephan Jansen; Stefan Lienenklaus; Bao Lu; Yumiko Imai; Marcus Müller; Susan E. Goelz; Darren P. Baker; Markus Schwaninger; Oliver Kann; Mathias Heikenwalder; Ulrich Kalinke; Marco Prinz
Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Ismini E. Papageorgiou; Andrea Lewen; Lukas V. Galow; Tiziana Cesetti; Jörg Scheffel; Tommy Regen; Uwe-Karsten Hanisch; Oliver Kann
Significance Microglia (brain macrophages) become rapidly activated in most neuropsychiatric disorders. A popular concept is that a single pathogenic stimulus, such as bacterial lipopolysaccharide (LPS) through Toll-like receptor 4 (TLR4), is sufficient to induce a reactive proinflammatory phenotype in microglia that exerts neurotoxicity. This concept is biologically risky, however. Here we provide evidence that chronic activation with either LPS or the leukocyte cytokine IFN-γ induces different reactive phenotypes in microglia of postnatal hippocampal tissue. Notably, these phenotypes only moderately alter diverse neuronal functions. In contrast, coactivation of TLR4 and IFN-γ receptors results in massive neural dysfunction and death. Thus, activation of TLR4 in microglia in situ requires concomitant IFN-γ signaling from other host immune cells to induce neurodegeneration. Microglia (tissue-resident macrophages) represent the main cell type of the innate immune system in the CNS; however, the mechanisms that control the activation of microglia are widely unknown. We systematically explored microglial activation and functional microglia–neuron interactions in organotypic hippocampal slice cultures, i.e., postnatal cortical tissue that lacks adaptive immunity. We applied electrophysiological recordings of local field potential and extracellular K+ concentration, immunohistochemistry, design-based stereology, morphometry, Sholl analysis, and biochemical analyses. We show that chronic activation with either bacterial lipopolysaccharide through Toll-like receptor 4 (TLR4) or leukocyte cytokine IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, CD11b and CD68 up-regulation, and proinflammatory cytokine (IL-1β, TNF-α, IL-6) and nitric oxide (NO) release. Notably, these reactive phenotypes only moderately alter intrinsic neuronal excitability and gamma oscillations (30–100 Hz), which emerge from precise synaptic communication of glutamatergic pyramidal cells and fast-spiking, parvalbumin-positive GABAergic interneurons, in local hippocampal networks. Short-term synaptic plasticity and extracellular potassium homeostasis during neural excitation, also reflecting astrocyte function, are unaffected. In contrast, the coactivation of TLR4 and IFN-γ receptors results in neuronal dysfunction and death, caused mainly by enhanced microglial inducible nitric oxide synthase (iNOS) expression and NO release, because iNOS inhibition is neuroprotective. Thus, activation of TLR4 in microglia in situ requires concomitant IFN-γ receptor signaling from peripheral immune cells, such as T helper type 1 and natural killer cells, to unleash neurotoxicity and inflammation-induced neurodegeneration. Our findings provide crucial mechanistic insight into the complex process of microglia activation, with relevance to several neurologic and psychiatric disorders.
Glia | 2011
Ismini E. Papageorgiou; Siegrun Gabriel; Andriani F. Fetani; Oliver Kann; Uwe Heinemann
Glutamine synthetase (GS) is an astrocytic enzyme, which catalyzes the synthesis of glutamine from glutamate and ammonia. In the central nervous system, GS prevents glutamate‐dependent excitotoxicity and detoxifies nitrogen. Reduction in both expression and activity of GS was reported in the hippocampus of patients with temporal lobe epilepsy (TLE), and this reduction has been suggested to contribute to epileptogenesis. In this study, we characterized hippocampal GS expression in the pilocarpine model of TLE in Wistar rats by means of stereology and morphometric analysis. Neither the GS positive cell number nor the GS containing cell volume was found to be altered in different hippocampal subregions of chronic epileptic rats when compared with controls. Instead, redistribution of the enzyme at both intracellular and tissue levels was observed in the epileptic hippocampus; GS was expressed more in proximal astrocytic branches, and GS expressing astrocytic somata was located in closer proximity to vascular walls. These effects were not due to shrinkage of astrocytic processes, as revealed by glial fibrillary acidic protein staining. Our results argue for GS redistribution rather than downregulation in the rat pilocarpine model of TLE. The potential contribution of increased GS perivascular affinity to the pathogenesis of epilepsy is discussed as well.
PLOS ONE | 2013
Patricia Kreis; Rita Hendricusdottir; Louise Kay; Ismini E. Papageorgiou; Michiel T. van Diepen; Till Mack; Jonny Ryves; Adrian J. Harwood; Nick R. Leslie; Oliver Kann; Madeline Parsons
Defects in actin dynamics affect activity-dependent modulation of synaptic transmission and neuronal plasticity, and can cause cognitive impairment. A salient candidate actin-binding protein linking synaptic dysfunction to cognitive deficits is Drebrin (DBN). However, the specific mode of how DBN is regulated at the central synapse is largely unknown. In this study we identify and characterize the interaction of the PTEN tumor suppressor with DBN. Our results demonstrate that PTEN binds DBN and that this interaction results in the dephosphorylation of a site present in the DBN C-terminus - serine 647. PTEN and pS647-DBN segregate into distinct and complimentary compartments in neurons, supporting the idea that PTEN negatively regulates DBN phosphorylation at this site. We further demonstrate that neuronal activity increases phosphorylation of DBN at S647 in hippocampal neurons in vitro and in ex vivo hippocampus slices exhibiting seizure activity, potentially by inducing rapid dissociation of the PTEN:DBN complex. Our results identify a novel mechanism by which PTEN is required to maintain DBN phosphorylation at dynamic range and signifies an unusual regulation of an actin-binding protein linked to cognitive decline and degenerative conditions at the CNS synapse.
Cardiovascular Psychiatry and Neurology | 2011
Richard Kovács; Ismini E. Papageorgiou; Uwe Heinemann
Proper neuronal functioning depends on a strictly regulated interstitial environment and tight coupling of neuronal and metabolic activity involving adequate vascular responses. These functions take place at the blood brain barrier (BBB) composed of endothelial cells, basal lamina covered with pericytes, and the endfeet of perivascular astrocytes. In conventional in vitro models of the BBB, some of these components are missing. Here we describe a new model system for studying BBB and neurovascular coupling by using confocal microscopy and fluorescence staining protocols in organotypic hippocampal slice cultures. An elaborated network of vessels is retained in culture in spite of the absence of blood flow. Application of calcein-AM either from the interstitial or from the luminal side resulted in different staining patterns indicating the maintenance of a barrier. By contrast, the ethidium derivative MitoSox penetrated perivascular basal lamina and revealed free radical formation in contractile cells embracing the vessels, likely pericytes.
Frontiers in Neuroscience | 2014
Lukas V. Galow; Justus Schneider; Andrea Lewen; Thuy-Truc Ta; Ismini E. Papageorgiou; Oliver Kann
Fast neuronal network oscillations in the gamma-frequency band (30–−100 Hz) provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity, and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose (10 mmol/L) for greater than 60 min in slice cultures while (ii) lowering glucose levels (2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective.
Journal of Neuroscience Research | 2015
Justus Schneider; Andrea Lewen; Thuy-Truc Ta; Lukas V. Galow; Raffaella Isola; Ismini E. Papageorgiou; Oliver Kann
Gamma oscillations (30–100 Hz) reflect a fast brain rhythm that provides a fundamental mechanism of complex neuronal information processing in the hippocampus and in the neocortex in vivo. Gamma oscillations have been implicated in higher brain functions, such as sensory perception, motor activity, and memory formation. Experimental studies on synaptic transmission and bioenergetics underlying gamma oscillations have primarily used acute slices of the hippocampus. This study tests whether organotypic hippocampal slice cultures of the rat provide an alternative model for cortical gamma oscillations in vitro. Our findings are that 1) slice cultures feature well‐preserved laminated architecture and neuronal morphology; 2) slice cultures of different maturation stages (7–28 days in vitro) reliably express gamma oscillations at about 40 Hz as induced by cholinergic (acetylcholine) or glutamatergic (kainate) receptor agonists; 3) the peak frequency of gamma oscillations depends on the temperature, with an increase of ∼3.5 Hz per degree Celsius for the range of 28–36°C; 4) most slice cultures show persistent gamma oscillations for ∼1 hr during electrophysiological local field potential recordings, and later alterations may occur; and 5) in slice cultures, glucose at a concentration of 5 mM in the recording solution is sufficient to power gamma oscillations, and additional energy substrate supply with monocarboxylate metabolite lactate (2 mM) exclusively increases the peak frequency by ∼4 Hz. This study shows that organotypic hippocampal slice cultures provide a reliable model to study agonist‐induced gamma oscillations at glucose levels near the physiological range.
Brain Structure & Function | 2015
Ismini E. Papageorgiou; Andriani F. Fetani; Andrea Lewen; Uwe Heinemann; Oliver Kann
Abstract Activation of microglial cells (brain macrophages) soon after status epilepticus has been suggested to be critical for the pathogenesis of mesial temporal lobe epilepsy (MTLE). However, microglial activation in the chronic phase of experimental MTLE has been scarcely addressed. In this study, we questioned whether microglial activation persists in the hippocampus of pilocarpine-treated, epileptic Wistar rats and to which extent it is associated with segmental neurodegeneration. Microglial cells were immunostained for the universal microglial marker, ionized calcium-binding adapter molecule-1 and the activation marker, CD11b (also known as OX42, Mac-1). Using quantitative morphology, i.e., stereology and Neurolucida-based reconstructions, we investigated morphological correlates of microglial activation such as cell number, ramification, somatic size and shape. We find that microglial cells in epileptic rats feature widespread, activation-related morphological changes such as increase in cell number density, massive up-regulation of CD11b and de-ramification. The parameters show heterogeneity in different hippocampal subregions. For instance, de-ramification is most prominent in the outer molecular layer of the dentate gyrus, whereas CD11b expression dominates in hilus. Interestingly, microglial activation only partially correlates with segmental neurodegeneration. Major neuronal death in the hilus, CA3 and CA1 coincides with strong up-regulation of CD11b. However, microglial activation is also observed in subregions that do not feature neurodegeneration, such as the molecular and granular layer of the dentate gyrus. This in vivo study provides solid experimental evidence that microglial cells feature widespread heterogeneous activation that only partially correlates with hippocampal segmental neuronal loss in experimental MTLE.
Frontiers in Systems Neuroscience | 2013
Benjamin Grieb; Constantin von Nicolai; Gerhard Engler; Andrew Sharott; Ismini E. Papageorgiou; Wolfgang Hamel; Andreas K. Engel; Christian K. E. Moll
Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinsons disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinsons disease.