Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ismo Strandén is active.

Publication


Featured researches published by Ismo Strandén.


Journal of Dairy Science | 2011

Reliabilities of genomic prediction using combined reference data of the Nordic Red dairy cattle populations

Rasmus Froberg Brøndum; E. Rius-Vilarrasa; Ismo Strandén; Guosheng Su; Bernt Guldbrandtsen; W.F. Fikse; Mogens Sandø Lund

This study investigated the possibility of increasing the reliability of direct genomic values (DGV) by combining reference populations. The data were from 3,735 bulls from Danish, Swedish, and Finnish Red dairy cattle populations. Single nucleotide polymorphism markers were fitted as random variables in a Bayesian model, using published estimated breeding values as response variables. In total, 17 index traits were analyzed. Reliabilities were estimated using a 5-fold cross validation, and calculated as the within-year squared correlation between estimated breeding values and DGV. Marker effects were estimated using reference populations from individual countries, as well as using a combined reference population from all 3 countries. Single-country reference populations gave mean reliabilities across 17 traits of 0.19 to 0.23, whereas the combined reference gave mean reliabilities of 0.26 for all populations. Using marker effects from 1 population to predict the other 2 gave a loss in mean reliability of 0.14 to 0.21 when predicting Swedish or Finnish animals with Danish marker effects, or vice versa. Using Swedish or Finnish marker effects to predict each other only showed a loss in mean reliability of 0.03 to 0.05. A combined Swedish-Finnish reference population led to an average reliability as high as that from the 3-country reference population, but somewhat different for individual traits. The results from this study show that it is possible to increase the reliability of DGV by combining reference populations from related populations.


Genetics Selection Evolution | 2011

Allele coding in genomic evaluation

Ismo Strandén; Ole F. Christensen

BackgroundGenomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference.ResultsTheoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being the best.ConclusionsDifferent allele coding methods lead to the same inference in the marker-based and equivalent models when a fixed general mean is included in the model. However, reliabilities of genomic breeding values are affected by the allele coding method used. The centered coding has some numerical advantages when Markov chain Monte Carlo methods are used.


Journal of Dairy Science | 2008

Genetic association of clinical mastitis with test-day somatic cell score and milk yield during first lactation of Finnish Ayrshire cows.

Enyew Negussie; Ismo Strandén; Esa Mäntysaari

In this study the genetic association during lactation of 2 clinical mastitis (CM) traits: CM1 (7 d before to 30 d after calving) and CM2 (31 to 300 d after calving) with test-day somatic cell score (SCS) and milk yield (MY) was assessed using multitrait random regression sire models. The data analyzed were from 27,557 first-lactation Finnish Ayrshire cows. Random regressions on second- and third-order Legendre polynomials were used to model the daily genetic and permanent environmental variances of test-day SCS and MY, respectively, while only the intercept term was fitted for CM. Results showed that genetic correlations between CM and the test-day traits varied during lactation. Genetic correlations between CM1 and CM2 and test-day SCS during lactation varied from 0.41 to 0.77 and from 0.34 to 0.71, respectively. Genetic correlations of test-day MY with CM1 and CM2 ranged from 0.13 to 0.51 and from 0.49 to 0.66, respectively. Correlations between CM1 and SCS were strongest during early lactation, whereas correlations between CM2 and SCS were strongest in late lactation. Genetic correlations lower than unity indicate that CM and SCS measure different aspects of the trait mastitis. Milk yield in early lactation was more strongly correlated with both CM1 and CM2 than milk yield in later lactation. This suggests that selection for higher lactation MY through selection on increased milk yield in early lactation will have a more deleterious effect on genetic resistance to mastitis than selection for higher yield in late lactation. The approach used in this study for the estimation of the genetic associations between test-day and CM traits could be used to combine information from traits with different data structures, such as test-day SCS and CM traits in a multitrait random regression model for the genetic evaluation of udder health.


Journal of Animal Breeding and Genetics | 2013

Across breed multi‐trait random regression genomic predictions in the Nordic Red dairy cattle

Mahlako Linah Makgahlela; Esa Mäntysaari; Ismo Strandén; M. Koivula; U.S. Nielsen; Mikko J. Sillanpää; J. Juga

The current study evaluates reliability of genomic predictions in selection candidates using multi-trait random regression model, which accounts for interactions between marker effects and breed of origin in the Nordic Red dairy cattle (RDC). The population structure of the RDC is admixed. Data consisted of individual animal breed proportions calculated from the full pedigree, deregressed proofs (DRP) of published estimated breeding values (EBV) for yield traits and genotypic data for 37,595 single nucleotide polymorphic markers. The analysed data included 3330 bulls in the reference population and 812 bulls that were used for validation. Direct genomic breeding values (DGV) were estimated using the model under study, which accounts for breed effects and also with GBLUP, which assume uniform population. Validation reliability was calculated as a coefficient of determination from weighted regression of DRP on DGV (rDRP,DGV 2), scaled by the mean reliability of DRP. Using the breed-specific model increased the reliability of DGV by 2 and 3% for milk and protein, respectively, when compared to homogeneous population GBLUP. The exception was for fat, where there was no gain in reliability. Estimated validation reliabilities were low for milk (0.32) and protein (0.32) and slightly higher (0.42) for fat.


Journal of Dairy Science | 2012

Different methods to calculate genomic predictions—Comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP)

Minna Koivula; Ismo Strandén; Guosheng Su; Esa Mäntysaari

Several strategies to use genomic data in predictions have been proposed. The aim of this study was to compare different genomic prediction methods. The response variables used in the genomic predictions were deregressed proofs, which were derived from 2 estimated breeding value (EBV) data sets. The full EBV data set from March 2010 included the EBV for production and mastitis traits for all Nordic red bulls. The reduced data set included the same animals as the full data set, but the EBV were predicted from a data set that excluded the last 5 yr of observations. Genomic predictions were obtained using different BLUP models: BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP). For the selection candidate bulls, the SNP-BLUP and G-BLUP models gave the same direct genomic breeding values (e.g., correlation of direct genomic breeding values between SNP-BLUP and G-BLUP for protein was 0.99), but slightly different from genomic EBV obtained from H-BLUP (correlations of SNP-BLUP or G-BLUP with H-BLUP were about 0.96). For all traits, SNP-BLUP and G-BLUP gave the same validation reliability, whereas H-BLUP led to slightly higher reliability. Therefore, the results support a slight advantage of using H-BLUP for genomic evaluation.


Journal of Animal Breeding and Genetics | 2008

Genetic (co)variances and breeding value estimation of Gompertz growth curve parameters in Finnish Yorkshire boars, gilts and barrows.

Minna Koivula; M.-L. Sevón-Aimonen; Ismo Strandén; Kaarina Matilainen; Timo Serenius; Kenneth J. Stalder; Esa Mäntysaari

This papers objectives were to estimate the genetic (co)variance components of the Gompertz growth curve parameters and to evaluate the relationship of estimated breeding values (EBV) based on average daily gain (ADG) and Gompertz growth curves. Finnish Yorkshire central test station performance data was obtained from the Faba Breeding (Vantaa, Finland). The final data set included 121,488 weight records from 10,111 pigs. Heritability estimates for the Gompertz growth parameters mature weight (alpha), logarithm of mature weight to birth weight ratio (beta) and maturation rate (kappa) were 0.44, 0.55 and 0.31, respectively. Genotypic and phenotypic correlations between the growth curve parameters were high and mainly negative. The only positive relationship was found between alpha and beta. Pearson and Spearman rank correlation coefficients between EBV for ADG and daily gain calculated from Gompertz growth curves were 0.79. The Spearman rank correlation between the sire EBV for ADG and Gompertz growth curve parameter-based ADG for all sires with at least 15 progeny was 0.86. Growth curves differ significantly between individuals and this information could be utilized for selection purposes when improving growth rate in pigs.


Journal of Dairy Science | 2013

The estimation of genomic relationships using breedwise allele frequencies among animals in multibreed populations

Mahlako Linah Makgahlela; Ismo Strandén; U.S. Nielsen; Mikko J. Sillanpää; Esa Mäntysaari

Different approaches of calculating genomic measures of relationship were explored and compared with pedigree relationships (A) within and across base breeds in a crossbreed population, using genotypes for 38,194 loci of 4,106 Nordic Red dairy cattle. Four genomic relationship matrices (G) were calculated using either observed allele frequencies (AF) across breeds or within-breed AF. The G matrices were compared separately when the AF were estimated in the observed and in the base population. Breedwise AF in the current and base population were estimated using linear regression models of individual genotypes on breed composition. Different G matrices were further used to predict direct estimated genomic values using a genomic BLUP model. Higher variability existed in the diagonal elements of G across breeds (standard deviation=0.06, on average) compared with A (0.01). The use of simple observed AF across base breeds to compute G increased coefficients for individuals in distantly related populations. Estimated breedwise AF reduced differences in coefficients similarly within and across populations. The variability of the current adjusted G matrix decreased from 0.055 to 0.035 when breedwise AF were estimated from the base breed population. The direct estimated genomic values and their validation reliabilities were, however, unaffected by AF used to compute G when estimated with a genomic BLUP model, due to inclusion of breed means in the model. In multibreed populations, G adjusted with breedwise AF from the founder population may provide more consistency among relationship coefficients between genotyped and ungenotyped individuals in an across-breed single-step evaluation.


Journal of Dairy Science | 2015

Single-step genomic evaluation using multitrait random regression model and test-day data

Minna Koivula; Ismo Strandén; Jukka Pösö; Gert Pedersen Aamand; Esa Mäntysaari

The objectives of this study were to evaluate the feasibility of use of the test-day (TD) single-step genomic BLUP (ssGBLUP) using phenotypic records of Nordic Red Dairy cows. The critical point in ssGBLUP is how genomically derived relationships (G) are integrated with population-based pedigree relationships (A) into a combined relationship matrix (H). Therefore, we also tested how different weights for genomic and pedigree relationships affect ssGBLUP, validation reliability, and validation regression coefficients. Deregressed proofs for 305-d milk, protein, and fat yields were used for a posteriori validation. The results showed that the use of phenotypic TD records in ssGBLUP is feasible. Moreover, the TD ssGBLUP model gave considerably higher validation reliabilities and validation regression coefficients than the TD model without genomic information. No significant differences were found in validation reliability between the different TD ssGBLUP models according to bootstrap confidence intervals. However, the degree of inflation in genomic enhanced breeding values is affected by the method used in construction of the H matrix. The results showed that ssGBLUP provides a good alternative to the currently used multi-step approach but there is a great need to find the best option to combine pedigree and genomic information in the genomic matrix.


Journal of Dairy Science | 2013

Genetic associations of test-day fat:protein ratio with milk yield, fertility, and udder health traits in Nordic Red cattle

Enyew Negussie; Ismo Strandén; Esa Mäntysaari

Interest is growing in finding indicator traits for the evaluation of nutritional or tissue energy status of animals directly at the individual animal level. The development and subsequent use of such traits in practice demands a clear understanding of the genetic and phenotypic associations with the various production and functional traits. In this study, the relationships during lactation between milk fat:protein ratio (FPR) and production and functional traits were estimated for Nordic Red cattle, in which published information is scarce. The objectives of this study were to estimate genetic associations of FPR with milk yield (MY), fertility, and udder health traits during different stages of lactation. Traits included in the analyses were MY, 4 fertility traits-days from calving to insemination (DFI), days open (DO), number of inseminations (NI), and nonreturn rate to 56 d (NRR)-and 2 udder health traits-test-day somatic cell score (SCS) and clinical mastitis (CM). Data were from a total of 22,422 first-lactation cows. Random regression models were used to estimate genetic parameters and associations between traits. The mean FPR in first-lactation cows was 1.28 and ranged from 1.25 to 1.45. During first lactation, the heritability of FPR ranged from 0.14 to 0.25. Genetic correlations between FPR and MY in early lactation (until 50 d in milk) were positive and ranged from 0.05 to 0.22; later in lactation, they were close to zero or negative, indicating that cows may have come out of the negative state of energy balance. The strength of genetic associations between FPR and fertility traits varied during lactation. In early lactation, correlations between FPR and the interval fertility traits DFI and DO were positive and ranged from 0.14 to 0.28. Genetic correlations between FPR and the udder health traits SCS and CM in early lactation ranged from 0.09 to 0.20. Milk fat:protein ratio is a heritable trait and easily available from routine milk-recording schemes. It can be used as a low-cost monitoring tool of poor health and fertility in the most critical phases of lactation and as an important indicator trait to improve robustness in dairy cows through selection.


Journal of Dairy Science | 2014

Using the unified relationship matrix adjusted by breed-wise allele frequencies in genomic evaluation of a multibreed population

Mahlako Linah Makgahlela; Ismo Strandén; U.S. Nielsen; Mikko J. Sillanpää; Esa Mäntysaari

The observed low accuracy of genomic selection in multibreed and admixed populations results from insufficient linkage disequilibrium between markers and trait loci. Failure to remove variation due to the population structure may also hamper the prediction accuracy. We verified if accounting for breed origin of alleles in the calculation of genomic relationships would improve the prediction accuracy in an admixed population. Individual breed proportions derived from the pedigree were used to estimate breed-wise allele frequencies (AF). Breed-wise and across-breed AF were estimated from the currently genotyped population and also in the base population. Genomic relationship matrices (G) were subsequently calculated using across-breed (GAB) and breed-wise (GBW) AF estimated in the currently genotyped and also in the base population. Unified relationship matrices were derived by combining different G with pedigree relationships in the evaluation of genomic estimated breeding values (GEBV) for genotyped and ungenotyped animals. The validation reliabilities and inflation of GEBV were assessed by a linear regression of deregressed breeding value (deregressed proofs) on GEBV, weighted by the reliability of deregressed proofs. The regression coefficients (b1) from GAB ranged from 0.76 for milk to 0.90 for protein. Corresponding b1 terms from GBW ranged from 0.72 to 0.88. The validation reliabilities across 4 evaluations with different G were generally 36, 40, and 46% for milk, protein, and fat, respectively. Unexpectedly, validation reliabilities were generally similar across different evaluations, irrespective of AF used to compute G. Thus, although accounting for the population structure in GBW tends to simplify the blending of genomic- and pedigree-based relationships, it appeared to have little effect on the validation reliabilities.

Collaboration


Dive into the Ismo Strandén's collaboration.

Top Co-Authors

Avatar

J. Juga

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Kjell Johansson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge