Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Istvan Bak is active.

Publication


Featured researches published by Istvan Bak.


Acta Physiologica | 2012

Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: focus on cardiovascular, lung, neurological and kidney disorders

David D. Haines; Istvan Lekli; P. Teissier; Istvan Bak; Arpad Tosaki

The present review examines the role of the cytoprotective enzyme haeme oxygenase‐1 (HO‐1) in adaptive responses to inflammatory disease and explores strategies for its clinical use, with particular emphasis on use of therapeutic use of the enzyme using phytochemical inducers of HO‐1 such as extracts of Ginkgo biloba, curcumin, and flavonoids extracted from seeds of the sour cherry (Prunus cerasus). This laboratory has identified strategies by which combinations of dietary phytochemicals may be configured to synergistically strengthen immunoregulatory mechanisms that normally prevent inflammation from leading to disease. A major focus of this research initiative has been HO‐1, which is capable of substantially reducing oxidative stress by several mechanisms. HO‐1 metabolizes haeme that accumulates in tissues because of red blood cell turnover. Two products of this degradation – carbon monoxide (CO) and bilirubin – have potent capacity for reducing oxidative stress and for counteracting its effects. A description will be provided of how HO‐1 products maintain healthy tissue function and remediate oxidative tissue damage. This will be explored in four major organ systems, including the cardiovascular system, the lungs, the central nervous system and the kidneys. Particular focus will be given to the physiological coordination of cardiovascular functions mediated by CO produced by HO‐1 and to nitric oxide (NO), a gaseous second messenger expressed by nitric oxide synthetase. A major unifying theme of the present review is an exploration of the potential use of dietary phytochemical formulations as tools for the clinical application of HO‐1 in therapeutic reduction of oxidative stressors, with resultant improved treatment of inflammatory pathologies.


Journal of Cardiovascular Pharmacology | 2000

Cardioprotective effects of the calcineurin inhibitor FK506 and the PAF receptor antagonist and free radical scavenger, EGb 761, in isolated ischemic/reperfused rat hearts

David D. Haines; Istvan Bak; Péter Ferdinandy; Fadia Mahmoud; Saleh A. Al-Harbi; Ingolf E. Blasig; Arpad Tosaki

Effects of the calcineurin inhibitor FK506, the platelet-activating factor (PAF) antagonist, and free radical scavenger Ginkgo biloba extract, EGb 761, and their combination on reperfusion-induced ventricular fibrillation (VF), ventricular tachycardia (VT), and recovery of cardiac function were studied after 30 min of global ischemia followed by 2 h of reperfusion in isolated rat hearts. In the first series of studies, rats received a daily (oral) dose of 0, 1, 5, 10, 20, or 40 mg/kg/day FK506 for 10 days. FK506 dose-dependently reduced the incidence of reperfusion-induced total (irreversible plus reversible) VF from a value of 92% for untreated animals to 92% (NS), 83% (NS), 67% (NS), 33% (p<0.05), and 25% (p<0.05), for doses of 1-40 mg/kg/day, respectively, with effects on incidence of VT showing the same pattern. FK506, between 20 and 40 mg/kg/day, also resulted in significant recovery of postischemic cardiac function. In the second series of studies, rats were treated with EGb 761 alone or in combination with FK506. Whereas no significant reduction in arrhythmias or improvement in cardiac function resulted from a single intervention of EGb 761 at 25 mg/kg/day, combined treatment of rats with 25 mg/kg/day of EGb 761 and 1 or 5 mg/kg/day of FK506 resulted in a reduction in total and irreversible VF of 92% and 92% to 42% (p<0.05) and 33% (p<0.05), 25% (p<0.05) and 8% (p<0.05), respectively, versus untreated control animals, paralleled by similar effects on the incidence of VT and accompanied by significant improvements in postischemic cardiac function. Our results demonstrate a novel cardioprotective characteristic of FK506 and suggest that combination therapy by using FK506 plus EGb 761 synergistically improves postischemic cardiac function, while reducing the incidence of reperfusion-induced VF and VT, which may expand the clinical utility of FK506 and allow therapy with FK506 at lower doses than are currently useful.


The FASEB Journal | 2003

Heme oxygenase-1 related carbon monoxide production and ventricular fibrillation in isolated ischemic/reperfused mouse myocardium

Istvan Bak; Levente Szendrei; Tibor Turoczi; Gábor Papp; Ferenc Joó; Dipak K. Das; Joël de Leiris; Peter Der; Bela Juhasz; Edit Varga; Ildikó Bácskay; József Balla; Peter Kovacs; Arpad Tosaki

Heme oxygenase‐1 (HO‐1)‐dependent carbon monoxide (CO) production related to reperfusion‐induced ventricular fibrillation (VF) was studied in HO‐1 wild‐type (+/+), heterozygous (+/−), and homozygous (−/−) isolated ischemic/reperfused mouse heart. In HO‐1 homozygous myocardium, under aerobic conditions, HO‐1 enzyme activity, HO‐1 mRNA, and protein expression were not detected in comparison with aerobically perfused wild‐type and heterozygous myocardium. In wild‐type, HO‐1 hetero‐ and homozygous hearts subjected to 20 min ischemia followed by 2 h of reperfusion, the expression of HO‐1 mRNA, protein, and HO‐1 enzyme activity was detected in various degrees. A reduction in the expression of HO‐1 mRNA, protein, and enzyme activity in fibrillated wild‐type and heterozygous myocardium was observed. In reperfused/nonfibrillated wild‐type and heterozygous hearts, a reduction in HO‐1 mRNA, protein expression, and HO‐1 enzyme activity was not observed, indicating that changes in HO‐1 mRNA, protein, and enzyme activity could be related to the development of VF. These changes were reflected in the HO‐1‐related endogenous CO production measured by gas chromatography. In HO‐1 knockout ischemic/reperfused myocardium, all hearts showed VF, and no detection in HO‐1 mRNA, protein, and enzyme activity was observed. Thus, interventions that are able to increase endogenous CO may prevent the development of VF.


Journal of Cellular and Molecular Medicine | 2010

Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection.

Istvan Lekli; Diptarka Ray; Subhendu Mukherjee; Narasimman Gurusamy; Md. Kaimul Ahsan; Bela Juhasz; Istvan Bak; Arpad Tosaki; Mihaela Gherghiceanu; L. M. Popescu; Dipak K. Das

This study compared two dietary phytochemicals, grape‐derived resveratrol and palm oil‐derived γ‐tocotrienol, either alone or in combination, on the contribution of autophagy in cardioprotection during ischaemia and reperfusion. Sprague‐Dawley rats weighing between 250 and 300 g were randomly assigned to one of the following groups: vehicle, ischaemia/reperfusion (I/R), resveratrol + I/R, γ‐tocotrienol + I/R, resveratrol +γ‐tocotrienol + I/R. For resveratrol treatments, the rats were gavaged with resveratrol (2.5 mg/kg) for 15 days while for γ‐tocotrienol experiments the rats were gavaged with γ‐tocotrienol (0.3 mg/kg) for 30 days. For the combined resveratrol +γ‐tocotrienol experiments, the rats were gavaged with γ‐tocotrienol for 15 days, and then gavaging continued with resveratrol along with γ‐tocotrienol for a further period of 15 days. After 30 days, isolated perfused hearts were subjected to 30 min. of global ischaemia followed by 2 hrs of reperfusion. Our results showed for the first time that at least in part, the cardioprotection (evidenced from the ventricular performance, myocardial infarct size and cardiomyocyte apoptosis) with resveratrol and γ‐toctrienol was achieved by their abilities to induce autophagy. Most importantly, resveratrol and γ‐tocotrienol acted synergistically providing greater degree of cardioprotection simultaneously generating greater amount of survival signal through the activation of Akt‐Bcl‐2 survival pathway. Autophagy was accompanied by the activation of Beclin and LC3‐II as well as mTOR signalling, which were inhibited by either 3‐methyl adenine (3‐MA) or Wortmannin. The autophagy was confirmed from the results of transmission electron microscopy and light microscopy as well as with confocal microscopy. It is tempting to speculate that during ischaemia and reperfusion autophagy along with enhanced survival signals helps to recover the cells from injury.


Cell Death & Differentiation | 2006

Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis.

Zsuzsa Szondy; Pier G. Mastroberardino; Judit Váradi; Maria Grazia Farrace; Norbert Nagy; Istvan Bak; Irene Viti; M. R. Wieckowski; Gerry Melino; Rosario Rizzuto; Arpad Tosaki; László Fésüs; Mauro Piacentini

Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis


Journal of Cardiovascular Pharmacology | 2005

Two inotropes with different mechanisms of action: Contractile, PDE-inhibitory and direct myofibrillar effects of levosimendan and enoximone

Szabolcs Szilágyi; Piero Pollesello; Jouko Levijoki; Heimo Haikala; Istvan Bak; Arpad Tosaki; Attila Borbély; István Édes; Zoltán Papp

We characterized the Ca2+-sensitizing and phosphodiesterase (PDE)-inhibitory potentials of levosimendan and enoximone to assess their contributions to the positive inotropic effects of these drugs. In guinea pig hearts perfused in the working-heart mode, the maximal increase in cardiac output (55%, P < 0.05) was attained at 50 nM levosimendan. The corresponding value for enoximone (36%) was significantly smaller (P < 0.05) and was observed at a higher concentration (500 nM). In permeabilized myocyte-sized preparations levosimendan evoked a maximal increase of 55.8 ± 8% (mean ± SEM) in isometric force production via Ca2+ sensitization (pCa 6.2, EC50 8.4 nM). Enoximone up to a concentration of 10 μM failed to influence the isometric force. The PDE-inhibitory effects were probed on the PDE III and PDE IV isoforms. Levosimendan proved to be a 1300-fold more potent and a 90-fold more selective PDE III inhibitor (IC50 for PDE III 1.4 nM, and IC50 for PDE IV 11 μM, selectivity factor ∼8000) than enoximone (IC50 for PDE III 1.8 μM, and IC50 for PDE IV 160 μM, selectivity factor ∼90). Hence, our data support the hypothesis that levosimendan exerts positive inotropy via a Ca2+-sensitizing mechanism, whereas enoximone does so via PDE inhibition with a limited PDE III versus PDE IV selectivity.


Free Radical Biology and Medicine | 2002

The role of heme oxygenase-related carbon monoxide and ventricular fibrillation in ischemic/reperfused hearts

Istvan Bak; Gábor Papp; Tibor Turoczi; Edit Varga; Levente Szendrei; Miklós Vecsernyés; Ferenc Joó; Arpad Tosaki

Reperfusion-induced ventricular fibrillation (VF) and heme oxygenase (HO)-related carbon monoxide (CO) production in isolated ischemic/reperfused rat hearts were studied by gas chromatography. Hearts were subjected to 30 min ischemia followed by 2 h reperfusion, and the expression of HO-1 mRNA (about 4-fold) was observed in ischemic/reperfused-nonfibrillated hearts. In fibrillated hearts, the reduction (about 75%) in HO-1 mRNA expression was detected. These changes in HO-1 mRNA expression were reflected in tissue CO production. Thus, in the absence of VF, CO production was increased about 3.5-fold, while in the presence of VF, CO production was under the detectable level in comparison with the control group. Our results suggest that the stimulation of HO-1 mRNA expression may lead to the prevention of reperfusion VF via an increase in endogenous CO production. To prove this, hearts were treated with 1 microM of N-tert-butyl-alpha-phenylnitrone (PBN) as an inducer of HO-1. PBN treatment resulted in about 20 times increase in HO-1 mRNA expression, and even a higher production rate in endogenous CO. HO protein level and enzyme activity followed the same pattern, as it was observed in HO-1 mRNA expression, in fibrillated and nonfibrillated myocardium. Five mM/l of zinc-protoporphyrin IX (ZnPPIX) significantly blocked HO enzyme activity and increased the incidence of VF, therefore the application of ZnPPIX led to a significant reduction in HO-1 mRNA and protein expression. Our data provide direct evidence of an inverse relationship between the development of reperfusion-induced VF and endogenous CO production. Thus, interventions that are able to increase tissue CO content may prevent the development of reperfusion-induced VF.


Phytotherapy Research | 2011

Summative interaction between astaxanthin, Ginkgo biloba extract (EGb761) and vitamin C in suppression of respiratory inflammation: a comparison with ibuprofen.

David D. Haines; Balazs Varga; Istvan Bak; Bela Juhasz; Fadia Mahmoud; Heybatullah Kalantari; Rudolf Gesztelyi; Istvan Lekli; Attila Czompa; Arpad Tosaki

In this study, combinations of Ginkgo biloba leaf extract (EGb761) plus the carotenoid antioxidant astaxanthin (ASX) and vitamin C were evaluated for a summative dose effect in the inhibition of asthma‐associated inflammation in asthmatic guinea‐pigs. Ovalbumin‐sensitized Hartley guinea‐pigs challenged with ovalbumin aerosol to induce asthma, were administered EGb761, ASX, vitamin C or ibuprofen. Following killing, bronchoalveolar lavage (BAL) fluid was evaluated for inflammatory cell infiltrates and lung tissue cyclic nucleotide content. Each parameter measured was significantly altered to a greater degree by drug combinations, than by each component acting independently. An optimal combination was identified that included astaxanthin (10 mg/kg), vitamin C (200 mg/kg) and EGb761 (10 mg/kg), resulting in counts of eosinophils and neutrophils each 1.6‐fold lower; macrophages 1.8‐fold lower, cAMP 1.4‐fold higher; and cGMP 2.04‐fold higher than levels in untreated, asthmatic animals (p < 0.05). In conclusion, EGb761, ASX and vitamin C are shown here to interact summatively to suppress inflammation with efficacy equal to or better than ibuprofen, a widely used non‐steroidal antiinflammatory drug (NSAID). Such combinations of non‐toxic phytochemicals constitute powerful tools for the prevention of onset of acute and chronic inflammatory disease if consumed regularly by healthy individuals; and may also augment the effectiveness of therapy for those with established illness. Copyright


Free Radical Biology and Medicine | 2011

Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity

Edina Bakondi; Betul Catalgol; Istvan Bak; Tobias Jung; Perinur Bozaykut; Mehmet Bayramiçli; Nesrin Kartal Ozer; Tilman Grune

Changes in protein turnover are among the dominant metabolic changes during aging. Of special importance is the maintenance of nuclear protein homeostasis to ensure a coordinated cellular metabolism. Therefore, in the nucleus a special PARP-1-mediated mechanism of proteasomal activation exists to ensure a rapid degradation of oxidized nuclear proteins. It was already demonstrated earlier that the cytosolic proteasomal system declines dramatically with aging, whereas the nuclear proteasome remains less affected. We demonstrate here that the stress-mediated proteasomal activation in the nucleus declines during replicative senescence of human fibroblasts. Furthermore, we clearly show that this decline in the PARP-1-mediated proteasomal activation is due to a decline in the expression and activity of PARP-1 in senescent fibroblasts. In a final study we show that this process also happens in vivo, because the protein expression level of PARP-1 is significantly lower in the skin of aged donors compared to that of young ones. Therefore, we conclude that the rate-limiting factor in poly(ADP-ribose)-mediated proteasomal activation in oxidative stress is PARP-1 and not the nuclear proteasome itself.


Journal of Medicinal Food | 2010

Isolation and Analysis of Bioactive Constituents of Sour Cherry (Prunus cerasus) Seed Kernel: An Emerging Functional Food

Istvan Bak; Istvan Lekli; Bela Juhasz; Edit Varga; Balazs Varga; Rudolf Gesztelyi; Levente Szendrei; Arpad Tosaki

A plant-based diet reduces the risk for the development of several chronic diseases, such as ischemic heart disease or cancer due to natural compounds found in plants. Numerous cereals, berries, fruits, and vegetables, including sour cherry (Prunus cerasus), which is a favored fruit worldwide, contain biological active components. The antioxidant components of the sour cherry seed kernel have not been investigated until now. The aim of our study was to isolate and analyze the bioactive constituents of sour cherry seed kernel. We separated the oil fraction of the kernel; then the remaining solid fraction was dried, and the oil-free kernel extract was further analyzed. Our results show that sour cherry seed kernel oil contains vegetable oils including unsaturated fatty acids, oleic acids, alpha-tocopherol, tocotrienols, and tocopherol-like components. The components of the solid fraction include various bioactive structures such as polyphenols, flavonoids, vegetable acids, and pro- and anthocyanidins, which could have useful therapeutic effects in the prevention of various vascular diseases.

Collaboration


Dive into the Istvan Bak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bela Juhasz

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar

Edit Varga

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge