Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judit Váradi is active.

Publication


Featured researches published by Judit Váradi.


European Journal of Pharmaceutical Sciences | 2010

Evaluation of the cytotoxicity of β-cyclodextrin derivatives: evidence for the role of cholesterol extraction.

Tímea Kiss; Ferenc Fenyvesi; Ildikó Bácskay; Judit Váradi; Éva Fenyvesi; R. Iványi; Lajos Szente; Arpad Tosaki; Miklós Vecsernyés

Several beta-cyclodextrin (beta-CD) derivatives have been synthesized recently to improve the physicochemical properties and inclusion capacities of the parent molecule, however, there is limited information available about their cytotoxic effects. In this study we investigated the cytotoxic and hemolytic properties of various beta-CDs in correlation with their cholesterol-solubilizing capacities to expose the mechanism of toxicity. MTT cell viability test, performed on Caco-2 cells showed significant differences between the cytotoxicity of beta-CD derivatives. Cell toxicity of methylated-beta-CDs was the highest, while ionic derivatives proved to be less toxic than methylated ones. Most of the second generation beta-CD derivatives, having both ionic and methyl substituents showed less cytotoxicity than the parent compounds both on Caco-2 cells and human erythrocytes. Inclusion of cholesterol into the ring of randomly methylated-beta-CD and heptakis(2,6-di-O-methyl)-beta-CD abolished the cell toxicity indicating the role of cholesterol extraction in cytotoxicity. These data demonstrate the correlation between the cytotoxic effect, hemolytic activity and the cholesterol complexation attributes of beta-CD derivatives and we propose that cholesterol-solubilizing properties can be a predictive factor for beta-CD cell toxicity.


European Journal of Pharmaceutical Sciences | 2012

Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer

Zoltán Ujhelyi; Ferenc Fenyvesi; Judit Váradi; Pálma Fehér; Tímea Kiss; Szilvia Veszelka; Mária A. Deli; Miklós Vecsernyés; Ildikó Bácskay

The objective of this study was to examine the cellular effects of the members of two non-ionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group. Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase hydrophobic bioavailability of a drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Paracellular permeability as a marker of the integrity of cell monolayers, was examined with Lucifer yellow assays combined with TransEpithelial Electrical Resistance (TEER) measurements. The effect of these surfactants on tight junctions as evidence for paracellular pathway was also characterized. The results of cytotoxicity assays were in agreement, and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good ability of micelle solubilization of Labrasol. In our paracellular transport experiments each of polyethylene glycol surfactants (Polysorbates and Labrasol) altered TEER values, but propylene glycol esters did not modify the monolayer integrity. Polyethylene glycol esters alone and in blends (0.05% Labrasol--0.001% Polysorbates 20, 60, 80) were able to increase Lucifer yellow permeability significantly below the IC₅₀ concentration. On the other hand Labrasol and Polysorbates 20 have expressed effect on tight junctions of Caco-2 monolayer. It could be concluded that polyethylene glycol ester-type tensides were able to enhance the paracellular permeability by the redistribution of junctional proteins. Our results might ensure useful data for selection of suitable tensides, co-tensides and tenside mixtures for SMEDDS formulations.


European Journal of Pharmaceutical Sciences | 2008

P-glycoprotein inhibition by membrane cholesterol modulation

Ferenc Fenyvesi; Éva Fenyvesi; Lajos Szente; Katalin Goda; Zsolt Bacsó; Ildikó Bácskay; Judit Váradi; Tímea Kiss; Éva Molnár; Tamás Janáky; Gábor Szabó; Miklós Vecsernyés

P-glycoprotein (Pgp) is a transmembrane protein that actively exports lipophilic chemotherapeutics from the cells causing multidrug resistance. Pgp molecules are partially localized in TX-100-resistant rafts, and the activity of the transporter is highly sensitive to the presence of cholesterol. To better understand these relationships, the influence of membrane cholesterol content on Pgp function, as measured via calcein accumulation, was studied in correlation with changes elicited in membrane structure. Membrane cholesterol was modulated by heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DIMEB) and the cholesterol inclusion complex of DIMEB (Chol-DIMEB). Changes in membrane cholesterol level were reflected by alterations in the overall lipid packing as measured by Merocyanine 540 (MC540) staining and were also accompanied by changes in the raft association of the pump. DIMEB and Chol-DIMEB treatments have also lead to increased permeability of the cell membrane in both directions, raising the possibility that the effects on pumping efficiency reflect leakage of ATP also from the non-permeabilized cells. However, the treatments did not influence the intracellular ATP levels of the non-permeabilized cells. Our data suggest that Pgp inhibition by cyclodextrin treatments arises through modulation of its membrane microenvironment, rather than as a result of concomitant cytotoxicity.


Cell Death & Differentiation | 2006

Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis.

Zsuzsa Szondy; Pier G. Mastroberardino; Judit Váradi; Maria Grazia Farrace; Norbert Nagy; Istvan Bak; Irene Viti; M. R. Wieckowski; Gerry Melino; Rosario Rizzuto; Arpad Tosaki; László Fésüs; Mauro Piacentini

Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis


Journal of Pharmaceutical Sciences | 2011

Randomly methylated β‐cyclodextrin derivatives enhance taxol permeability through human intestinal epithelial Caco‐2 cell monolayer

Ferenc Fenyvesi; Tímea Kiss; Éva Fenyvesi; Lajos Szente; Szilvia Veszelka; Mária A. Deli; Judit Váradi; Pálma Fehér; Zoltán Ujhelyi; Arpad Tosaki; Miklós Vecsernyés; Ildikó Bácskay

Intestinal absorption and bioavailability of taxol are limited by its low solubility and P-glycoprotein (Pgp) activity. Methylated β-cyclodextrins (CDs) effectively form complexes with paclitaxel but randomly methylated β-cyclodextrin (RAMEB) is cytotoxic in high concentrations. Second-generation derivatives containing monoamino (MaRAMEB) and succinylated (SuRAMEB) ionic substituents with similar inclusion capacity but less toxicity could be promising alternatives of RAMEB. Our aim was to examine and compare the efficacy of MaRAMEB and SuRAMEB with the parental RAMEB on taxol bidirectional permeability using the Caco-2 model. Taxol permeability was not changed by 30-min pretreatment with CDs. In co-treatment with β-cyclodextrins, the apical to basolateral taxol flux was 4 to 6 times greater than in untreated monolayers and it was also higher than in cells treated with Pgp inhibitor cyclosporin A. No decrease in basolateral to apical taxol flux was observed in pretreatment or co-treatment with CDs, suggesting no Pgp inhibition. All three CDs showed similar effects on taxol permeability but RAMEB altered tight junction protein distribution and significantly decreased transepithelial electrical resistance. None of the CDs modified paracellular permeability to mannitol and polyethylene glycol 4000. In conclusion, second-generation derivatives of methyl-β-cyclodextrin, especially MaRAMEB, enhanced taxol permeability across Caco-2 cells with less toxicity and similar effectiveness as RAMEB.


PLOS ONE | 2014

Fluorescently Labeled Methyl-Beta-Cyclodextrin Enters Intestinal Epithelial Caco-2 Cells by Fluid-Phase Endocytosis

Ferenc Fenyvesi; Katalin Réti-Nagy; Zsolt Bacsó; Zsuzsanna Gutay-Tóth; Milo Malanga; Éva Fenyvesi; Lajos Szente; Judit Váradi; Zoltán Ujhelyi; Pálma Fehér; Gábor Szabó; Miklós Vecsernyés; Ildikó Bácskay

Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-RAMEB) on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability coefficient was 3.35±1.29×10−8 cm/s and its permeability did not change in the presence of 5 mM randomly methylated-beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis marker Lucifer Yellow. The internalization process was fully inhibited at 0°C and it was drastically reduced at 37°C applying rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a. These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to the bioavailability enhancement of cyclodextrins.


Cellular and Molecular Biology | 2005

The role of exogenous carbon monoxide in the recovery of post-ischemic cardiac function in buffer perfused isolated rat hearts

Istvan Bak; Judit Váradi; Norbert Nagy; Miklós Vecsernyés; Arpad Tosaki

Isolated rat hearts were perfused for 10 min with oxygenated buffer and equilibrated with carbon monoxide (CO) of 0.001% and 0.01% before the induction of 30 min global ischemia followed by 120 min of reperfusion. These concentrations of CO significantly improved the post-ischemic recovery of coronary flow (CF), aortic flow (AF), and left ventricular developed pressure (LVDP). The improvement in recovery reflected in the reduction of infarct size and the incidence of reperfusion-induced ventricular fibrillation (VF). Thus, hearts subjected to 0.001% and 0.01% of CO exposure via the perfusion buffer, infarct size was reduced from the CO-free control value of 39% +/- 5% to 21% +/- 3% (*p<0.05) and 18% +/- 4% (*p<0.05), respectively. In the presence of 0.001% and 0.01% CO, the incidence of VF was also reduced from its control value of 92% to 17% (*p<0.05) and 17% (*p<0.05), respectively. Increasing the CO exposure to 0.1% in the buffer, all hearts showed VF combined with ventricular tachycardia or bradycardia and various rhythm disturbances indicating the direct toxic effects of CO on the myocardium. The results show that cardioprotective concentrations (0.01% and 0.001%) of exogenous CO related to an increase in cGMP levels and guanylate cyclase activities.


International Journal of Pharmaceutics | 2015

Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery

Katalin Réti-Nagy; Milo Malanga; Éva Fenyvesi; Lajos Szente; György Vámosi; Judit Váradi; Ildikó Bácskay; Pálma Fehér; Zoltán Ujhelyi; Eszter Róka; Miklós Vecsernyés; György T. Balogh; Gábor Vasvári; Ferenc Fenyvesi

Cyclodextrins are widely used excipients in pharmaceutical formulations. They are mainly utilized as solubilizers and absorption enhancers, but recent results revealed their effects on cell membranes and pharmacological barriers. In addition to the growing knowledge on their interaction with plasma membranes, it was confirmed that cyclodextrins are able to enter cells by endocytosis. The number of the tested cyclodextrins was limited, and the role of this mechanism in drug absorption and delivery is not known. Our aim was to examine the endocytosis of fluorescently labeled hydroxypropyl-β-cyclodextrin, random methyl-β-cyclodextrin and soluble β-cyclodextrin polymer, and the cellular uptake of the fluorescent paclitaxel derivative-random methyl-β-cyclodextrin complex. The studied cyclodextrin derivatives were able to enter Caco-2 intestinal cells and localized in vesicles in the cytoplasm, while their permeability was very limited through Caco-2 monolayers. We demonstrated for the first time that the fluorescent paclitaxel derivative and rhodamine-labeled random methyl-β-cyclodextrin were detected in the same intracellular vesicles after treating cells with their inclusion complex. These results indicate that the endocytosis of cyclodextrin complexes can contribute to drug absorption processes.


Molecules | 2015

Evaluation of the Cytotoxicity of α-Cyclodextrin Derivatives on the Caco-2 Cell Line and Human Erythrocytes

Eszter Róka; Zoltán Ujhelyi; Mária A. Deli; Alexandra Bocsik; Éva Fenyvesi; Lajos Szente; Ferenc Fenyvesi; Miklós Vecsernyés; Judit Váradi; Pálma Fehér; Rudolf Gesztelyi; Caroline Felix; Florent Perret; Ildikó Bácskay

Cyclodextrins, even the 6-membered α-cyclodextrin, are approved in the various pharmacopoeias as pharmaceutical excipients for solubilizing and stabilizing drugs as well as for controlling drug release. Recently α-cyclodextrin has also been marketed as health food with beneficial effects on blood lipid profiles. However, the concentration of α-cyclodextrin used may be very high in these cases, and its toxic attributes have to be seriously considered. The objective of this study was to investigate the cytotoxicity of various, differently substituted α-cyclodextrin derivatives and determine relationship between the structures and cytotoxicity. Three different methods were used, viability tests (MTT assay and Real Time Cell Electronic Sensing on Caco-2 cells) as well as hemolysis test on human red blood cells. The effect of α-cyclodextrin derivatives resulted in concentration-dependent cytotoxicity, so the IC50 values have been determined. Based on our evaluation, the Real Time Cell Electronic Sensing method is the most accurate for describing the time and concentration dependency of the observed toxic effects. Regarding the cytotoxicity on Caco-2 cells, phosphatidylcholine extraction may play a main role in the mechanism. Our results should provide help in selecting those α-cyclodextrin derivatives which have the potential of being used safely in medical formulations.


Molecules | 2016

Efficacy of Pre- and Post-Treatment by Topical Formulations Containing Dissolved and Suspended Silybum marianum against UVB-Induced Oxidative Stress in Guinea Pig and on HaCaT Keratinocytes

Pálma Fehér; Zoltán Ujhelyi; Judit Váradi; Ferenc Fenyvesi; Eszter Róka; Bela Juhasz; Balazs Varga; Mariann Bombicz; Dániel Priksz; Ildikó Bácskay; Miklós Vecsernyés

Plants with high amounts of antioxidants may be a promising therapy for preventing and curing UV-induced oxidative skin damage. The objective of this study was to verify the efficacy of topical formulations containing dissolved and suspended Silybum marianum extract against UVB-induced oxidative stress in guinea pig and HaCaT keratinocytes. Herbal extract was dissolved in Transcutol HP (TC) and sucrose-esters were incorporated as penetration enhancers in creams. Biocompatibility of compositions was tested on HeLa cells and HaCaT keratinocytes as in vitro models. Transepidermal water loss (TEWL) tests were performed to prove the safety of formulations in vivo. Drug release of different compositions was assessed by Franz diffusion methods. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (MDA) activities were evaluated before and after UVB irradiation in a guinea pig model and HaCaT cells. Heme oxygenase-1 (HO-1) enzyme activity was measured in the epidermis of guinea pigs treated by different creams before and after UVB irradiation. Treatment with compositions containing silymarin powder (SM) dissolved in TC and sucrose stearate SP 50 or SP 70 resulted in increased activities of all reactive oxygen species (ROS) eliminating enzymes in the case of pre- and post-treatment as well. Reduction in the levels of lipid peroxidation end products was also detected after treatment with these two compositions. Post-treatment was more effective as the increase of the activity of antioxidants was higher. Lower HO-1 enzyme levels were measured in the case of pre- and post-treatment groups compared to control groups. Therefore, this study demonstrates the effectiveness of topical formulations containing silymarin in inhibiting UVB irradiation induced oxidative stress of the skin.

Collaboration


Dive into the Judit Váradi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bela Juhasz

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar

Istvan Bak

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tímea Kiss

University of Debrecen

View shared research outputs
Researchain Logo
Decentralizing Knowledge