Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Istvan Czikora is active.

Publication


Featured researches published by Istvan Czikora.


Journal of Cellular Biochemistry | 2006

Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure

Krisztina Tar; Csilla Csortos; Istvan Czikora; Gabor Olah; Shwu Fan Ma; Raj Wadgaonkar; Pál Gergely; Joe G. N. Garcia; Alexander D. Verin

Our recently published data suggested the involvement of protein phosphatase 2A (PP2A) in endothelial cell (EC) barrier regulation (Tar et al. [2004] J Cell Biochem 92:534–546). In order to further elucidate the role of PP2A in the regulation of EC cytoskeleton and permeability, PP2A catalytic (PP2Ac) and A regulatory (PP2Aa) subunits were cloned and human pulmonary arterial EC (HPAEC) were transfected with PP2A mammalian expression constructs or infected with PP2A recombinant adenoviruses. Immunostaining of PP2Ac or of PP2Aa + c overexpressing HPAEC indicated actin cytoskeleton rearrangement. PP2A overexpression hindered or at least dramatically reduced thrombin‐ or nocodazole‐induced F‐actin stress fiber formation and microtubule (MT) dissolution. Accordingly, it also attenuated thrombin‐ or nocodazole‐induced decrease in transendothelial electrical resistance indicative of barrier protection. Inhibition of PP2A by okadaic acid abolished its effect on agonist‐induced changes in EC cytoskeleton; this indicates a critical role of PP2A activity in EC cytoskeletal maintenance. The overexpression of PP2A significantly attenuated thrombin‐ or nocodazole‐induced phosphorylation of HSP27 and tau, two cytoskeletal proteins, which potentially could be involved in agonist‐induced cytoskeletal rearrangement and in the increase of permeability. PP2A‐mediated dephosphorylation of HSP27 and tau correlated with PP2A‐induced preservation of EC cytoskeleton and barrier maintenance. Collectively, our observations clearly demonstrate the crucial role of PP2A in EC barrier protection. J. Cell. Biochem. 98: 931–953, 2006.


American Journal of Respiratory and Critical Care Medicine | 2014

A novel tumor necrosis factor–mediated mechanism of direct epithelial sodium channel activation

Istvan Czikora; Abdel A. Alli; Hui Fang Bao; David Kaftan; Supriya Sridhar; Hans-Jürgen Apell; Boris Gorshkov; Richard E. White; Astrid Zimmermann; Albrecht Wendel; Meike Pauly-Evers; Jürg Hamacher; Irène Garcia-Gabay; Bernhard Fischer; Alexander D. Verin; Zsolt Bagi; Jean Francois Pittet; Waheed Shabbir; Rosa Lemmens-Gruber; Trinad Chakraborty; Ahmed Lazrak; Michael A. Matthay; Douglas C. Eaton; Rudolf Lucas

RATIONALE Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

TIMAP is a positive regulator of pulmonary endothelial barrier function

Csilla Csortos; Istvan Czikora; Natalia V. Bogatcheva; Djanybek Adyshev; Christophe Poirier; Gabor Olah; Alexander D. Verin

TGF-beta-inhibited membrane-associated protein, TIMAP, is expressed at high levels in endothelial cells (EC). It is regarded as a member of the MYPT (myosin phosphatase target subunit) family of protein phosphatase 1 (PP1) regulatory subunits; however, its function in EC is not clear. In our pull-down experiments, recombinant TIMAP binds preferentially the beta-isoform of the catalytic subunit of PP1 (PP1cbeta) from pulmonary artery EC. As PP1cbeta, but not PP1calpha, binds with MYPT1 into functional complex, these results suggest that TIMAP is a novel regulatory subunit of myosin phosphatase in EC. TIMAP depletion by small interfering RNA (siRNA) technique attenuates increases in transendothelial electrical resistance induced by EC barrier-protective agents (sphingosine-1-phosphate, ATP) and enhances the effect of barrier-compromising agents (thrombin, nocodazole) demonstrating a barrier-protective role of TIMAP in EC. Immunofluorescent staining revealed colocalization of TIMAP with membrane/cytoskeletal protein, moesin. Moreover, TIMAP coimmunoprecipitates with moesin suggesting the involvement of TIMAP/moesin interaction in TIMAP-mediated EC barrier enhancement. Activation of cAMP/PKA cascade by forskolin, which has a barrier-protective effect against thrombin-induced EC permeability, attenuates thrombin-induced phosphorylation of moesin at the cell periphery of control siRNA-treated EC. On the contrary, in TIMAP-depleted EC, forskolin failed to affect the level of moesin phosphorylation at the cell edges. These results suggest the involvement of TIMAP in PKA-mediated moesin dephosphorylation and the importance of this dephosphorylation in TIMAP-mediated EC barrier protection.


Toxins | 2013

Mini-Review: Novel Therapeutic Strategies to Blunt Actions of Pneumolysin in the Lungs

Rudolf Lucas; Istvan Czikora; Supriya Sridhar; Evgeny A. Zemskov; Boris Gorshkov; Umapathy Siddaramappa; Aluya Oseghale; Jonathan Lawson; Alexander D. Verin; Ferenc G. Rick; Norman L. Block; Helena Pillich; Maritza J. Romero; Martin Leustik; Andrew V. Schally; Trinad Chakraborty

Severe pneumonia is the main single cause of death worldwide in children under five years of age. The main etiological agent of pneumonia is the G+ bacterium Streptococcus pneumoniae, which accounts for up to 45% of all cases. Intriguingly, patients can still die days after commencing antibiotic treatment due to the development of permeability edema, although the pathogen was successfully cleared from their lungs. This condition is characterized by a dramatically impaired alveolar epithelial-capillary barrier function and a dysfunction of the sodium transporters required for edema reabsorption, including the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed sodium potassium pump (Na+-K+-ATPase). The main agent inducing this edema formation is the virulence factor pneumolysin, a cholesterol-binding pore-forming toxin, released in the alveolar compartment of the lungs when pneumococci are being lysed by antibiotic treatment or upon autolysis. Sub-lytic concentrations of pneumolysin can cause endothelial barrier dysfunction and can impair ENaC-mediated sodium uptake in type II alveolar epithelial cells. These events significantly contribute to the formation of permeability edema, for which currently no standard therapy is available. This review focuses on discussing some recent developments in the search for the novel therapeutic agents able to improve lung function despite the presence of pore-forming toxins. Such treatments could reduce the potentially lethal complications occurring after antibiotic treatment of patients with severe pneumonia.


Journal of Cellular Physiology | 2012

Molecular characterization of myosin phosphatase in endothelium

Kyung Mi Kim; Csilla Csortos; Istvan Czikora; David Fulton; Nagavedi S. Umapathy; Gabor Olah; Alexander D. Verin

The phosphorylation status of myosin light chain (MLC) is regulated by both MLC kinases and type 1 Ser/Thr phosphatase (PPase 1), MLC phosphatase (MLCP) activities. The activity of the catalytic subunit of MLCP (CS1β) towards myosin depends on its associated regulatory subunit, namely myosin PPase targeting subunit 1 (MYPT1). Our previously published data strongly suggested the involvement of MLCP in endothelial cell (EC) barrier regulation. In this study, our new data demonstrate that inhibition of MLCP by either CS1β or MYPT1 siRNA‐based depletion results in significant attenuation of purine nucleotide (ATP and adenosine)‐induced EC barrier enhancement. Consistent with the data, thrombin‐induced EC F‐actin stress fiber formation and permeability increase were attenuated by the ectopic expression of constitutively active (C/A) MYPT1. The data demonstrated for the first time direct involvement of MLCP in EC barrier enhancement/protection. Cloning of MYPT1 in human pulmonary artery EC (HPAEC) revealed the presence of two MYPT1 isoforms, long and variant 2 (V2) lacking 56 amino acids from 553 to 609 of human MYPT1 long, which were previously identified in HeLa and HEK 293 cells. Our data demonstrated that in Cos‐7 cells ectopically expressed EC MYPT1 isoforms co‐immunoprecipitated with intact CS1β suggesting the importance of PPase 1 activity for the formation of functional complex of MYPT1/CS1β. Interestingly, MYPT1 V2 shows decreased binding affinity compared to MYPT1 long for radixin (novel MLCP substrate and a member of ERM family proteins). These results suggest functional difference between EC MYPT1 isoforms in the regulation of MLCP activity and cytoskeleton. J. Cell. Physiol. 227: 1701–1708, 2012.


Frontiers in Immunology | 2013

Arginase 1: An Unexpected Mediator of Pulmonary Capillary Barrier Dysfunction in Models of Acute Lung Injury

Rudolf Lucas; Istvan Czikora; Supriya Sridhar; Evgeny A. Zemskov; Aluya Oseghale; Sebastian Circo; Stephen D. Cederbaum; Trinad Chakraborty; David Fulton; Robert W. Caldwell; Maritza J. Romero

The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Caveolin-1 prevents sustained angiotensin II-induced resistance artery constriction and obesity-induced high blood pressure

Istvan Czikora; Attila Feher; Rudolf Lucas; David Fulton; Zsolt Bagi

The type 1 angiotensin II (ANG II) receptor (AT1R) undergoes internalization following stimulation by ANG II. Internalization reduces cell surface AT1Rs, and it is required for AT1R resensitization. In this process AT1R may interact with caveolin-1 (Cav1), the main scaffolding protein of caveolae. We hypothesized that the interaction between Cav1 and AT1R delays AT1R resensitization and thereby prevents sustained ANG II-induced resistance artery (RA) constriction under normal conditions and in experimental obesity. In rat and mouse skeletal muscle RA (diameter: ∼90-120 μm) ANG II-induced constrictions were reduced upon repeated (30-min apart) administrations. Upon disruption of caveolae with methyl-β-cyclodextrin or in RA of Cav1 knockout mice, repeated ANG II applications resulted in essentially maintained constrictions. In vascular smooth muscle cells, AT1R interacted with Cav1, and the degree of cell surface interactions was reduced by long-term (15-min), but not short-term (2-min), exposure to ANG II. When Cav1 was silenced, the amount of membrane-associated AT1R was significantly reduced by a short-term ANG II exposure. Moreover, Cav1 knockout mice fed a high-fat diet exhibited augmented and sustained RA constriction to ANG II and had elevated systemic blood pressure, when compared with normal or high-fat fed wild-type mice. Thus, Cav1, through a direct interaction, delays internalization and subsequent resensitization of AT1R. We suggest that this mechanism prevents sustained ANG II-induced RA constriction and elevated systemic blood pressure in diet-induced obesity.


Frontiers in Physiology | 2014

Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction

Istvan Czikora; Supriya Sridhar; Boris Gorshkov; I. B. Alieva; Anita Kása; Joyce Gonzales; Olena Potapenko; Nagavedi S. Umapathy; Helena Pillich; Ferenc G. Rick; Norman L. Block; Alexander D. Verin; Trinad Chakraborty; Michael A. Matthay; Andrew V. Schally; Rudolf Lucas

Rationale: Antibiotic treatment of patients infected with G− or G+ bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Methods: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. Results: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. Conclusions: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.


Biochimie | 2011

Characterization of the effect of TIMAP phosphorylation on its interaction with protein phosphatase 1

Istvan Czikora; Kyung Mi Kim; Anita Kása; Bálint Bécsi; Alexander D. Verin; Pál Gergely; Ferenc Erdodi; Csilla Csortos

TIMAP, TGF-β inhibited, membrane-associated protein, is highly abundant in endothelial cells (EC). We have shown earlier the involvement of TIMAP in PKA-mediated ERM (ezrin-radixin-moesin) dephosphorylation as part of EC barrier protection by TIMAP (Csortos et al., 2008). Emerging data demonstrate the regulatory role of TIMAP on protein phosphatase 1 (PP1) activity. We provide here evidence for specific interaction (K(a) = 1.80 × 10(6) M(-1)) between non-phosphorylated TIMAP and the catalytic subunit of PP1 (PP1c) by surface plasmon resonance based binding studies. Thiophosphorylation of TIMAP by PKA, or sequential thiophosphorylation by PKA and GSK3β slightly modifies the association constant for the interaction of TIMAP with PP1c and decreases the rate of dissociation. However, dephosphorylation of phospho-moesin substrate by PP1cβ is inhibited to different extent in the presence of non- (~60% inhibition), mono- (~50% inhibition) or double-thiophosphorylated (<10% inhibition) form of TIMAP. Our data suggest that double-thiophosphorylation of TIMAP has minor effect on its binding ability to PP1c, but considerably attenuates its inhibitory effect on the activity of PP1c. PKA activation by forskolin treatment of EC prevented thrombin evoked barrier dysfunction and ERM phosphorylation at the cell membrane (Csortos et al., 2008). With the employment of specific GSK3β inhibitor it is shown here that PKA activation is followed by GSK3β activation in bovine pulmonary EC and both of these activations are required for the rescuing effect of forskolin in thrombin treated EC. Our results suggest that the forskolin induced PKA/GSK3β activation protects the EC barrier via TIMAP-mediated decreasing of the ERM phosphorylation level.


Journal of Biological Chemistry | 2016

The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the α-Subunit.

Rudolf Lucas; Qiang Yue; Abdel A. Alli; Billie Jeanne Duke; Otor Al-Khalili; Tiffany L. Thai; Jürg Hamacher; Supriya Sridhar; Iryna Lebedyeva; Huabo Su; Susan Tzotzos; Bernhard Fischer; Armanda Gameiro; Maria Loose; Trinad Chakraborty; Waheed Shabbir; Mohammed Aufy; Rosa Lemmens-Gruber; Douglas C. Eaton; Istvan Czikora

Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α, as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val567, Glu568, and Glu571, located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α, but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells, 3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the β and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.

Collaboration


Dive into the Istvan Czikora's collaboration.

Top Co-Authors

Avatar

Rudolf Lucas

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Supriya Sridhar

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Gorshkov

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David Fulton

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Maritza J. Romero

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge