Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where István Ulbert is active.

Publication


Featured researches published by István Ulbert.


Science | 2008

Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection

Peter Lakatos; George Karmos; Ashesh D. Mehta; István Ulbert; Charles E. Schroeder

Whereas gamma-band neuronal oscillations clearly appear integral to visual attention, the role of lower-frequency oscillations is still being debated. Mounting evidence indicates that a key functional property of these oscillations is the rhythmic shifting of excitability in local neuronal ensembles. Here, we show that when attended stimuli are in a rhythmic stream, delta-band oscillations in the primary visual cortex entrain to the rhythm of the stream, resulting in increased response gain for task-relevant events and decreased reaction times. Because of hierarchical cross-frequency coupling, delta phase also determines momentary power in higher-frequency activity. These instrumental functions of low-frequency oscillations support a conceptual framework that integrates numerous earlier findings.


Neuron | 2003

Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex

Anna Devor; Andrew K. Dunn; Mark L. Andermann; István Ulbert; David A. Boas; Anders M. Dale

Recent advances in brain imaging techniques, including functional magnetic resonance imaging (fMRI), offer great promise for noninvasive mapping of brain function. However, the indirect nature of the imaging signals to the underlying neural activity limits the interpretation of the resulting maps. The present report represents the first systematic study with sufficient statistical power to quantitatively characterize the relationship between changes in blood oxygen content and the neural spiking and synaptic activity. Using two-dimensional optical measurements of hemodynamic signals, simultaneous recordings of neural activity, and an event-related stimulus paradigm, we demonstrate that (1) there is a strongly nonlinear relationship between electrophysiological measures of neuronal activity and the hemodynamic response, (2) the hemodynamic response continues to grow beyond the saturation of electrical activity, and (3) the initial increase in deoxyhemoglobin that precedes an increase in blood volume is counterbalanced by an equal initial decrease in oxyhemoglobin.


The Journal of Neuroscience | 2007

Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal.

Anna Devor; Peifang Tian; Nozomi Nishimura; Ivan C. Teng; Elizabeth M. C. Hillman; Suresh N. Narayanan; István Ulbert; David A. Boas; David Kleinfeld; Anders M. Dale

Synaptic transmission initiates a cascade of signal transduction events that couple neuronal activity to local changes in blood flow and oxygenation. Although a number of vasoactive molecules and specific cell types have been implicated, the transformation of stimulus-induced activation of neuronal circuits to hemodynamic changes is still unclear. We use somatosensory stimulation and a suite of in vivo imaging tools to study neurovascular coupling in rat primary somatosensory cortex. Our stimulus evoked a central region of net neuronal depolarization surrounded by net hyperpolarization. Hemodynamic measurements revealed that predominant depolarization corresponded to an increase in oxygenation, whereas predominant hyperpolarization corresponded to a decrease in oxygenation. On the microscopic level of single surface arterioles, the response was composed of a combination of dilatory and constrictive phases. Critically, the relative strength of vasoconstriction covaried with the relative strength of oxygenation decrease and neuronal hyperpolarization. These results suggest that a neuronal inhibition and concurrent arteriolar vasoconstriction correspond to a decrease in blood oxygenation, which would be consistent with a negative blood oxygenation level-dependent functional magnetic resonance imaging signal.


The Journal of Neuroscience | 2005

Responses of Human Anterior Cingulate Cortex Microdomains to Error Detection, Conflict Monitoring, Stimulus-Response Mapping, Familiarity, and Orienting

Chunmao Wang; István Ulbert; Donald L. Schomer; Ksenija Marinkovic; Eric Halgren

Human anterior cingulate cortex (ACC) activity modulation has been observed in numerous tasks, consistent with a wide variety of functions. However, previous recordings have not had sufficient spatial resolution to determine whether microdomains (approximately one to two columns) are involved in multiple tasks, how activity is distributed across cortical layers, or indeed whether modulation reflected neuronal excitation, inhibition, or both. In this study, linear arrays of 24 microelectrodes were used to estimate population synaptic currents and neuronal firing in different layers of ACC during simple/choice reaction time, delayed word recognition, rhyming, auditory oddball, and cued conditional letter-discrimination tasks. Responses to all tasks, with differential responses to errors, familiarity, difficulty, and orienting, were recorded in single microdomains. The strongest responses occurred ∼300-800 ms after stimulus onset and were usually a current source with inhibited firing, strongly suggesting active inhibition in superficial layers during the behavioral response period. This was usually followed by a sink from ∼800 to 1400 ms, consistent with postresponse rebound activation. Transient phase locking of task-related theta activity in superficial cingulate layers suggested extended interactions with medial and lateral frontal and temporal sites. These data suggest that each anterior cingulate microdomain participates in a multilobar cortical network after behavioral responses in a variety of tasks.


Science | 2009

The human K-complex represents an isolated cortical down-state.

Sydney S. Cash; Eric Halgren; Nima Dehghani; Andrea O. Rossetti; Thomas Thesen; Chunmao Wang; Orrin Devinsky; Ruben Kuzniecky; Werner K. Doyle; Joseph R. Madsen; Edward B. Bromfield; Loránd Erőss; Péter Halász; George Karmos; Richárd Csercsa; Lucia Wittner; István Ulbert

Down But Not Out The K-complex, a defining characteristic of slow wave sleep, is the largest spontaneously occurring component of the healthy human electroencephalogram (EEG) but little is known about its physiological characteristics in the human cortex. Cash et al. (p. 1084) investigated the intracortical origin of K-complexes in humans undergoing surgery for epileptic seizures. In simultaneous subdural EEG and intracortical multisite microelectrode recordings, K complexes represented cortical downstates reflecting a decrease in neural firing. These down-states are a fundamental mode of cortical operation that have been well studied in animals and may contribute to sleep preservation and memory consolidation. A characteristic electroencephalogram pattern seen during sleep is accompanied by a steep decline in neural activity. The electroencephalogram (EEG) is a mainstay of clinical neurology and is tightly correlated with brain function, but the specific currents generating human EEG elements remain poorly specified because of a lack of microphysiological recordings. The largest event in healthy human EEGs is the K-complex (KC), which occurs in slow-wave sleep. Here, we show that KCs are generated in widespread cortical areas by outward dendritic currents in the middle and upper cortical layers, accompanied by decreased broadband EEG power and decreased neuronal firing, which demonstrate a steep decline in network activity. Thus, KCs are isolated “down-states,” a fundamental cortico-thalamic processing mode already characterized in animals. This correspondence is compatible with proposed contributions of the KC to sleep preservation and memory consolidation.


The Journal of Neuroscience | 2010

Phase Entrainment of Human Delta Oscillations Can Mediate the Effects of Expectation on Reaction Speed

Gábor Stefanics; Balázs Hangya; István Hernádi; István Winkler; Peter Lakatos; István Ulbert

The more we anticipate a response to a predictable stimulus, the faster we react. This empirical observation has been confirmed and quantified by many investigators suggesting that the processing of behaviorally relevant stimuli is facilitated by probability-based confidence of anticipation. However, the exact neural mechanisms underlying this phenomenon are largely unknown. Here we show that performance changes related to different levels of expectancy originate in dynamic modulation of delta oscillation phase. Our results obtained in rhythmic auditory target detection tasks indicated significant entrainment of the EEG delta rhythm to the onset of the target tones with increasing phase synchronization at higher levels of predictability. Reaction times correlated with the phase of the delta band oscillation at target onset. The fastest reactions occurred during the delta phase that most commonly coincided with the target event in the high expectancy conditions. These results suggest that low-frequency oscillations play a functional role in human anticipatory mechanisms, presumably by modulating synchronized rhythmic fluctuations in the excitability of large neuronal populations and by facilitating efficient task-related neuronal communication among brain areas responsible for sensory processing and response execution.


The Journal of Neuroscience | 2010

Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus

Attila I. Gulyás; Gergely G. Szabó; István Ulbert; Noemi Holderith; Hannah Monyer; Ferenc Erdélyi; Gábor Szabó; Tamás F. Freund; Norbert Hájos

Gamma frequency oscillations in cortical regions can be recorded during cognitive processes, including attention or memory tasks. These oscillations are generated locally as a result of reciprocal interactions between excitatory pyramidal cells and perisomatic inhibitory interneurons. Here, we examined the contribution of the three perisomatic interneuron types—the parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as the cholecystokinin-containing regular-spiking basket cells (RSBCs) to cholinergically induced oscillations in hippocampal slices, a rhythmic activity that captures several features of the gamma oscillations recorded in vivo. By analyzing the spiking activities of single neurons recorded in parallel with local field potentials, we found that all three cell types fired phase locked to the carbachol-induced oscillations, although with different frequencies and precision. During these oscillations, FSBCs fired the most with the highest accuracy compared with the discharge of AACs and RSBCs. In further experiments, we showed that activation of μ-opioid receptors by DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin acetate), which significantly reduced the inhibitory, but not excitatory, transmission, suppressed or even blocked network oscillations both in vitro and in vivo, leading to the desynchronization of pyramidal cell firing. Using paired recordings, we demonstrated that carbachol application blocked GABA release from RSBCs and reduced it from FSBCs and AACs, whereas DAMGO further suppressed the GABA release only from FSBCs, but not from AACs. These results collectively suggest that the rhythmic perisomatic inhibition, generating oscillatory fluctuation in local field potentials after carbachol treatment of hippocampal slices, is the result of periodic GABA release from FSBCs.


Journal of Neuroscience Methods | 2006

Current-source density estimation based on inversion of electrostatic forward solution : Effects of finite extent of neuronal activity and conductivity discontinuities

Klas H. Pettersen; Anna Devor; István Ulbert; Anders M. Dale; Gaute T. Einevoll

A new method for estimation of current-source density (CSD) from local field potentials is presented. This inverse CSD (iCSD) method is based on explicit inversion of the electrostatic forward solution and can be applied to data from multielectrode arrays with various geometries. Here, the method is applied to linear-array (laminar) electrode data. Three iCSD methods are considered: the CSD is assumed to have cylindrical symmetry and be (i) localized in infinitely thin discs, (ii) step-wise constant or (iii) continuous and smoothly varying (using cubic splines) in the vertical direction. For spatially confined CSD distributions the standard CSD method, involving a discrete double derivative, is seen in model calculations to give significant estimation errors when the lateral source dimension is comparable to the size of a cortical column (less than approximately 1 mm). Further, discontinuities in the extracellular conductivity are seen to potentially give sizable errors for even wider source distributions. The iCSD methods are seen to give excellent estimates when the correct lateral source dimension and spatial distribution of conductivity are incorporated. To illustrate the application to real data, iCSD estimates of stimulus-evoked responses measured with laminar electrodes in the rat somatosensory (barrel) cortex are compared to estimates from the standard CSD method.


Journal of Neuroscience Methods | 2001

Multiple microelectrode-recording system for human intracortical applications

István Ulbert; Eric Halgren; Gary Heit; George Karmos

The human brain is dominated by the neocortex, a large folded surface, whose cellular and synaptic elements are arranged in layers. Since cortical structure is relatively constant across its surface, local information processing can be inferred from multiple laminar recordings of its electrical activity along a line perpendicular to its surface. Such recordings need to be spaced at least as close together as the cortical layers, and need to be wideband in order to sample both low frequency synaptic currents as well as high-frequency action potentials. Finally, any device used in the human brain must comply with strict safety standards. The current paper presents details of a system meeting these criteria, together with sample results obtained from epileptic subjects undergoing acute or chronic intracranial monitoring for definition of the epileptogenic region.


Brain | 2010

Laminar analysis of slow wave activity in humans

Richárd Csercsa; Balazs Dombovari; Dániel Fabó; Lucia Wittner; Loránd Erőss; László Entz; András Sólyom; György Rásonyi; Anna Szűcs; Anna Kelemen; Rita Jakus; Vera Juhos; László Grand; Andor Magony; Péter Halász; Tamás F. Freund; Zsófia Maglóczky; Sydney S. Cash; László Papp; G. Karmos; Eric Halgren; István Ulbert

Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful inward transmembrane currents, mainly localized to the supragranular layers. Neuronal firing in the up-state was sparse and the average discharge rate of single cells was less than expected from animal studies. Action potentials at up-state onset were synchronized within +/-10 ms across all cortical layers, suggesting that any layer could initiate firing at up-state onset. These findings provide strong direct experimental evidence that slow wave activity in humans is characterized by hyperpolarizing currents associated with suppressed cell firing, alternating with high levels of oscillatory synaptic/transmembrane activity associated with increased cell firing. Our results emphasize the major involvement of supragranular layers in the genesis of slow wave activity.

Collaboration


Dive into the István Ulbert's collaboration.

Top Co-Authors

Avatar

Eric Halgren

University of California

View shared research outputs
Top Co-Authors

Avatar

Lucia Wittner

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dániel Fabó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Richárd Fiáth

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

László Entz

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ashesh D. Mehta

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

George Karmos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge