Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Itaru Urakawa is active.

Publication


Featured researches published by Itaru Urakawa.


Nature | 2006

Klotho converts canonical FGF receptor into a specific receptor for FGF23

Itaru Urakawa; Yuji Yamazaki; Takashi Shimada; Kousuke Iijima; Hisashi Hasegawa; Katsuya Okawa; Toshiro Fujita; Seiji Fukumoto; Takeyoshi Yamashita

FGF23 is a unique member of the fibroblast growth factor (FGF) family because it acts as a hormone that derives from bone and regulates kidney functions, whereas most other family members are thought to regulate various cell functions at a local level. The renotropic activity of circulating FGF23 indicates the possible presence of an FGF23-specific receptor in the kidney. Here we show that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor. Using a renal homogenate, we found that Klotho binds to FGF23. Forced expression of Klotho enabled the high-affinity binding of FGF23 to the cell surface and restored the ability of a renal cell line to respond to FGF23 treatment. Moreover, FGF23 incompetence was induced by injecting wild-type mice with an anti-Klotho monoclonal antibody. Thus, Klotho is essential for endogenous FGF23 function. Because Klotho alone seemed to be incapable of intracellular signalling, we searched for other components of the FGF23 receptor and found FGFR1(IIIc), which was directly converted by Klotho into the FGF23 receptor. Thus, the concerted action of Klotho and FGFR1(IIIc) reconstitutes the FGF23 receptor. These findings provide insights into the diversity and specificity of interactions between FGF and FGF receptors.


Kidney International | 2010

Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease

Hisashi Hasegawa; Nobuo Nagano; Itaru Urakawa; Yuji Yamazaki; Kousuke Iijima; Toshiro Fujita; Takeyoshi Yamashita; Seiji Fukumoto; Takashi Shimada

Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with early chronic kidney disease (CKD) and are postulated to cause low blood levels of 1,25-dihydroxyvitamin D, as well as normal phosphate levels. In order to provide more direct evidence for the pathophysiological role of FGF23 in the settings of mineral ion homeostasis typically seen in early CKD, we studied rats with progressive CKD treated with anti-FGF23 neutralizing antibody. Without antibody treatment, rats with CKD exhibited high circulating levels of FGF23 and parathyroid hormone, low 1,25-dihydroxyvitamin D, and normal serum phosphate levels, accompanied by increased fractional excretion of phosphate. Antibody treatment, however, lessened fractional excretion of phosphate, thus increasing serum phosphate levels, and normalized serum 1,25-dihydroxyvitamin D by increased 1α-OHase and decreased 24-OHase expressions in the kidney. These antibody-induced changes were followed by increased serum calcium levels, leading to decreased serum parathyroid hormone. Hence, our study shows that FGF23 normalizes serum phosphate and decreases 1,25-dihydroxyvitamin D levels in early-stage CKD, and suggests a pathological sequence of events for the development of secondary hyperparathyroidism triggered by increased FGF23, followed by a reduction of 1,25-dihydroxyvitamin D and calcium levels, thereby increasing parathyroid hormone secretion.


Biochemical and Biophysical Research Communications | 2010

Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects

Yuji Yamazaki; Akihiro Imura; Itaru Urakawa; Takashi Shimada; Junko Murakami; Yukiko Aono; Hisashi Hasegawa; Takeyoshi Yamashita; Kimihiko Nakatani; Yoshihiko Saito; Nozomi Okamoto; Norio Kurumatani; Noriyuki Namba; Taichi Kitaoka; Keiichi Ozono; Tomoyuki Sakai; Hiroshi Hataya; Shoji Ichikawa; Erik A. Imel; Michael J. Econs; Yo-ichi Nabeshima

BACKGROUND Alpha-Klotho (alphaKl) regulates mineral metabolism such as calcium ion (Ca(2+)) and inorganic phosphate (Pi) in circulation. Defects in mice result in clinical features resembling disorders found in human aging. Although the importance of transmembrane-type alphaKl has been demonstrated, less is known regarding the physiological importance of soluble-type alphaKl (salphaKl) in circulation. OBJECTIVES The aims of this study were: (1) to establish a sandwich ELISA system enabling detection of circulating serum salphaKl, and (2) to determine reference values for salphaKl serum levels and relationship to indices of renal function, mineral metabolism, age and sex in healthy subjects. RESULTS We successively developed an ELISA to measure serum salphaKl in healthy volunteers (n=142, males 66) of ages (61.1+/-18.5year). The levels (mean+/-SD) in these healthy control adults were as follows: total calcium (Ca; 9.46+/-0.41mg/dL), Pi (3.63+/-0.51mg/dL), blood urea nitrogen (BUN; 15.7+/-4.3mg/dL), creatinine (Cre; 0.69+/-0.14mg/dL), 1,25 dihydroxyvitamin D (1,25(OH)(2)D; 54.8+/-17.7pg/mL), intact parathyroid hormone (iPTH; 49.2+/-20.6pg/mL), calcitonin (26.0+/-12.3pg/mL) and intact fibroblast growth factor (FGF23; 43.8+/-17.6pg/mL). Serum levels of salphaKl ranged from 239 to 1266pg/mL (mean+/-SD; 562+/-146pg/mL) in normal adults. Although salphaKl levels were not modified by gender or indices of mineral metabolism, salphaKl levels were inversely related to Cre and age. However, salphaKl levels in normal children (n=39, males 23, mean+/-SD; 7.1+/-4.8years) were significantly higher (mean+/-SD; 952+/-282pg/mL) than those in adults (mean+/-SD; 562+/-146, P<0.001). A multivariate linear regression analysis including children and adults in this study demonstrated that salphaKl correlated negatively with age and Ca, and positively with Pi. Finally, we measured a serum salphaKl from a patient with severe tumoral calcinosis derived from a homozygous missense mutation of alpha-klotho gene. In this patient, salphaKl level was notably lower than those of age-matched controls. CONCLUSION We established a detection system to measure human serum salphaKl for the first time. Age, Ca and Pi seem to influence serum salphaKl levels in a normal population. This detection system should be an excellent tool for investigating salphaKl functions in mineral metabolism.


Journal of Bone and Mineral Research | 2009

Therapeutic Effects of Anti‐FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia

Yukiko Aono; Yuji Yamazaki; Junichi Yasutake; Takehisa Kawata; Hisashi Hasegawa; Itaru Urakawa; Toshiro Fujita; Michihito Wada; Takeyoshi Yamashita; Seiji Fukumoto; Takashi Shimada

X‐linked hypophosphatemia (XLH), characterized by renal phosphate wasting, is the most common cause of vitamin D‐resistant rickets. It has been postulated that some phosphaturic factor plays a causative role in XLH and its murine homolog, the Hyp mouse. Fibroblast growth factor 23 (FGF23) is a physiological phosphaturic factor; its circulatory level is known to be high in most patients with XLH and Hyp mice, suggesting its pathophysiological role in this disease. To test this hypothesis, we treated Hyp mice with anti‐FGF23 antibodies to inhibit endogenous FGF23 action. A single injection of the antibodies corrected the hypophosphatemia and inappropriately normal serum 1,25‐dihydroxyvitamin D. These effects were accompanied by increased expressions of type IIa sodium‐phosphate cotransporter and 25‐hydroxyvitamin‐D‐1α‐hydroxylase and a suppressed expression of 24‐hydroxylase in the kidney. Repeated injections during the growth period ameliorated the rachitic bone phenotypes typically observed in Hyp mice, such as impaired longitudinal elongation, defective mineralization, and abnormal cartilage development. Thus, these results indicate that excess actions of FGF23 underlie hypophosphatemic rickets in Hyp mice and suggest a novel therapeutic potential of the FGF23 antibodies for XLH.


The Journal of Clinical Endocrinology and Metabolism | 2010

Circulating Fibroblast Growth Factor 23 in Patients with End-Stage Renal Disease Treated by Peritoneal Dialysis Is Intact and Biologically Active

Takashi Shimada; Itaru Urakawa; Tamara Isakova; Yuji Yamazaki; Michael Epstein; Katherine Wesseling-Perry; Myles Wolf; Isidro B. Salusky; Harald Jüppner

CONTEXT Fibroblast growth factor 23 (FGF23) regulates phosphorus homeostasis and vitamin D metabolism. Circulating FGF23 levels are elevated in inherited and acquired hypophosphatemic disorders that can cause rickets or osteomalacia. Particularly increased concentrations of FGF23 are observed in patients with chronic kidney disease (CKD), in which increased FGF23 is associated with more rapid disease progression, improved bone mineralization, the development of left ventricular hypertrophy, and increased mortality. OBJECTIVE Our objective was to determine whether the markedly elevated levels of immunoreactive FGF23 in CKD represent accumulation of intact, biologically active hormone, C-terminal cleavage fragments, or both. DESIGN Biologically active FGF23 in plasma from CKD patients treated by peritoneal dialysis was quantified using a cell-based Egr-1 reporter assay; bioactive FGF23 levels were compared with those measured with immunometric FGF23 assays detecting either intact hormone alone or intact hormone and C-terminal fragments. SETTING AND PATIENTS Adult and pediatric patients with end-stage renal disease treated with peritoneal dialysis participated in the study at a tertiary referral center. RESULTS Serially diluted patient samples revealed levels of bioactive FGF23 that ran in parallel to CHO cell-derived recombinant human FGF23. FGF23 bioactivity was inhibited by an anti-FGF23 antibody. Levels of bioactive and immunoreactive FGF23 were tightly correlated, and Western blot analysis of FGF23 immunoprecipitated with anti-FGF23 antibodies from plasma of dialysis patients revealed only a single prominent protein band, which was indistinguishable from recombinant intact FGF23, without clear evidence for FGF23 fragments. CONCLUSIONS Our results provide strong evidence for the conclusion that virtually all circulating FGF23 in dialysis patients is intact and biologically active.


Journal of Bone and Mineral Research | 2008

Anti‐FGF23 Neutralizing Antibodies Show the Physiological Role and Structural Features of FGF23

Yuji Yamazaki; Taro Tamada; Noriyuki Kasai; Itaru Urakawa; Yukiko Aono; Hisashi Hasegawa; Toshiro Fujita; Ryota Kuroki; Takeyoshi Yamashita; Seiji Fukumoto; Takashi Shimada

Fibroblast growth factor (FGF)23 is proposed to play a physiological role in the regulation of phosphate and vitamin D metabolism; deranged circulatory levels of FGF23 cause several diseases with abnormal mineral metabolism. This paper presents a novel approach to analyze the mechanism of action of FGF23 using anti‐FGF23 monoclonal antibodies that can neutralize FGF23 activities both in vitro and in vivo. We developed two antibodies (FN1 and FC1) that recognize the N‐ and C‐terminal regions of FGF23, respectively. Both FN1 and FC1 inhibited FGF23 activity in a cell‐based Klotho‐dependent reporter assay. Their administration caused marked increases in serum phosphate and 1,25D levels in normal mice. These changes were accompanied by altered expression in the kidney of type IIa sodium‐phosphate cotransporter, 25‐hydroxyvitamin‐D‐1α‐hydroxylase, and 24‐hydroxylase. Thus, this study using neutralizing antibodies confirms that FGF23 is a physiological regulator of phosphate and vitamin D metabolism. We addressed the mechanism of action for these neutralizing antibodies. Structural analysis of the FGF23/FN1‐Fab complex showed that FN1 masked putative FGF receptor‐binding sites in the N‐terminal domain of FGF23, whereas biochemical analyses showed that FC1 interfered with the association between FGF23 and Klotho by binding to the C‐terminal domain of FGF23. Taken together, our results suggest that the N‐ and C‐terminal domains of FGF23 are responsible for association with cognate FGF receptors and Klotho, respectively, and that these interactions are indispensable for FGF23 activity.


Journal of Bone and Mineral Research | 2006

Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23.

Yaacov Frishberg; Nobuaki Ito; Choni Rinat; Yuji Yamazaki; Sofia Feinstein; Itaru Urakawa; Paulina Navon-Elkan; Rachel Becker-Cohen; Takeyoshi Yamashita; Kaori Araya; Takashi Igarashi; Toshiro Fujita; Seiji Fukumoto

Two hyperphosphatemic patients with mutations in GALNT3 showed low intact FGF23 levels with marked increase of processed C‐terminal fragments. FGF23 protein has three O‐linked glycans and FGF23 with incomplete glycosylation is susceptible to processing. Silencing GALNT3 resulted in enhanced processing of FGF23. Decreased function of FGF23 by enhanced processing is the cause of hyperphosphatemia in patients with GALNT3 mutation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Relevant use of Klotho in FGF19 subfamily signaling system in vivo.

Kenichi Tomiyama; Ryota Maeda; Itaru Urakawa; Yuji Yamazaki; Tomohiro Tanaka; Shinji Ito; Yoko Nabeshima; Tsutomu Tomita; Shinji Odori; Kiminori Hosoda; Kazuwa Nakao; Akihiro Imura; Yo-ichi Nabeshima

α-Klotho (α-Kl) and its homolog, β-Klotho (β-Kl) are key regulators of mineral homeostasis and bile acid/cholesterol metabolism, respectively. FGF15/ humanFGF19, FGF21, and FGF23, members of the FGF19 subfamily, are believed to act as circulating metabolic regulators. Analyses of functional interactions between α- and β-Kl and FGF19 factors in wild-type, α-kl −/−, and β-kl −/− mice revealed a comprehensive regulatory scheme of mineral homeostasis involving the mutually regulated positive/negative feedback actions of α-Kl, FGF23, and 1,25(OH)2D and an analogous regulatory network composed of β-Kl, FGF15/humanFGF19, and bile acids that regulate bile acid/cholesterol metabolism. Contrary to in vitro data, β-Kl is not essential for FGF21 signaling in adipose tissues in vivo, because (i) FGF21 signals are transduced in the absence of β-Kl, (ii) FGF21 could not be precipitated by β-Kl, and (iii) essential phenotypes in Fgf21 −/− mice (decreased expressions of Hsl and Atgl in WAT) were not replicated in β-kl −/− mice. These findings suggest the existence of Klotho-independent FGF21 signaling pathway(s) where undefined cofactors are involved. One-to-one functional interactions such as α-Klotho/FGF23, β-Klotho/FGF15 (humanFGF19), and undefined cofactor/FGF21 would result in tissue-specific signal transduction of the FGF19 subfamily.


Endocrinology | 2002

Mutant FGF-23 Responsible for Autosomal Dominant Hypophosphatemic Rickets Is Resistant to Proteolytic Cleavage and Causes Hypophosphatemia in Vivo

Takashi Shimada; Takanori Muto; Itaru Urakawa; Takashi Yoneya; Yuji Yamazaki; Katsuya Okawa; Yasuhiro Takeuchi; Toshiro Fujita; Seiji Fukumoto; Takeyoshi Yamashita


Biochemical and Biophysical Research Communications | 2004

FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa☆

Takashi Shimada; Itaru Urakawa; Yuji Yamazaki; Hisashi Hasegawa; Rieko Hino; Takashi Yoneya; Yasuhiro Takeuchi; Toshiro Fujita; Seiji Fukumoto; Takeyoshi Yamashita

Collaboration


Dive into the Itaru Urakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge