Seiji Fukumoto
University of Tokushima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seiji Fukumoto.
Nature | 2006
Itaru Urakawa; Yuji Yamazaki; Takashi Shimada; Kousuke Iijima; Hisashi Hasegawa; Katsuya Okawa; Toshiro Fujita; Seiji Fukumoto; Takeyoshi Yamashita
FGF23 is a unique member of the fibroblast growth factor (FGF) family because it acts as a hormone that derives from bone and regulates kidney functions, whereas most other family members are thought to regulate various cell functions at a local level. The renotropic activity of circulating FGF23 indicates the possible presence of an FGF23-specific receptor in the kidney. Here we show that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor. Using a renal homogenate, we found that Klotho binds to FGF23. Forced expression of Klotho enabled the high-affinity binding of FGF23 to the cell surface and restored the ability of a renal cell line to respond to FGF23 treatment. Moreover, FGF23 incompetence was induced by injecting wild-type mice with an anti-Klotho monoclonal antibody. Thus, Klotho is essential for endogenous FGF23 function. Because Klotho alone seemed to be incapable of intracellular signalling, we searched for other components of the FGF23 receptor and found FGFR1(IIIc), which was directly converted by Klotho into the FGF23 receptor. Thus, the concerted action of Klotho and FGFR1(IIIc) reconstitutes the FGF23 receptor. These findings provide insights into the diversity and specificity of interactions between FGF and FGF receptors.
Kidney International | 2010
Hisashi Hasegawa; Nobuo Nagano; Itaru Urakawa; Yuji Yamazaki; Kousuke Iijima; Toshiro Fujita; Takeyoshi Yamashita; Seiji Fukumoto; Takashi Shimada
Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with early chronic kidney disease (CKD) and are postulated to cause low blood levels of 1,25-dihydroxyvitamin D, as well as normal phosphate levels. In order to provide more direct evidence for the pathophysiological role of FGF23 in the settings of mineral ion homeostasis typically seen in early CKD, we studied rats with progressive CKD treated with anti-FGF23 neutralizing antibody. Without antibody treatment, rats with CKD exhibited high circulating levels of FGF23 and parathyroid hormone, low 1,25-dihydroxyvitamin D, and normal serum phosphate levels, accompanied by increased fractional excretion of phosphate. Antibody treatment, however, lessened fractional excretion of phosphate, thus increasing serum phosphate levels, and normalized serum 1,25-dihydroxyvitamin D by increased 1α-OHase and decreased 24-OHase expressions in the kidney. These antibody-induced changes were followed by increased serum calcium levels, leading to decreased serum parathyroid hormone. Hence, our study shows that FGF23 normalizes serum phosphate and decreases 1,25-dihydroxyvitamin D levels in early-stage CKD, and suggests a pathological sequence of events for the development of secondary hyperparathyroidism triggered by increased FGF23, followed by a reduction of 1,25-dihydroxyvitamin D and calcium levels, thereby increasing parathyroid hormone secretion.
Trends in Endocrinology and Metabolism | 2009
Seiji Fukumoto; T. John Martin
Although bone has long been recognized as a target for hormones influencing calcium and phosphorus homeostasis and bone structure, recent evidence shows that the skeleton itself produces at least two hormones, fibroblast growth factor 23 (FGF23) and osteocalcin. FGF23 is produced by osteocytes in bone and acts on the kidney to inhibit 1alpha-hydroxylation of vitamin D and promote phosphorus excretion. Mouse genetics studies revealed that the osteoblast product, osteocalcin, acts on the pancreatic beta-cell to enhance insulin production and on peripheral tissues to increase glucose utilization as a result of increased insulin sensitivity and to reduce visceral fat. This review highlights the recent studies indicating bones role as an endocrine organ.
Journal of Bone and Mineral Research | 2009
Yukiko Aono; Yuji Yamazaki; Junichi Yasutake; Takehisa Kawata; Hisashi Hasegawa; Itaru Urakawa; Toshiro Fujita; Michihito Wada; Takeyoshi Yamashita; Seiji Fukumoto; Takashi Shimada
X‐linked hypophosphatemia (XLH), characterized by renal phosphate wasting, is the most common cause of vitamin D‐resistant rickets. It has been postulated that some phosphaturic factor plays a causative role in XLH and its murine homolog, the Hyp mouse. Fibroblast growth factor 23 (FGF23) is a physiological phosphaturic factor; its circulatory level is known to be high in most patients with XLH and Hyp mice, suggesting its pathophysiological role in this disease. To test this hypothesis, we treated Hyp mice with anti‐FGF23 antibodies to inhibit endogenous FGF23 action. A single injection of the antibodies corrected the hypophosphatemia and inappropriately normal serum 1,25‐dihydroxyvitamin D. These effects were accompanied by increased expressions of type IIa sodium‐phosphate cotransporter and 25‐hydroxyvitamin‐D‐1α‐hydroxylase and a suppressed expression of 24‐hydroxylase in the kidney. Repeated injections during the growth period ameliorated the rachitic bone phenotypes typically observed in Hyp mice, such as impaired longitudinal elongation, defective mineralization, and abnormal cartilage development. Thus, these results indicate that excess actions of FGF23 underlie hypophosphatemic rickets in Hyp mice and suggest a novel therapeutic potential of the FGF23 antibodies for XLH.
Journal of Bone and Mineral Research | 2008
Yuji Yamazaki; Taro Tamada; Noriyuki Kasai; Itaru Urakawa; Yukiko Aono; Hisashi Hasegawa; Toshiro Fujita; Ryota Kuroki; Takeyoshi Yamashita; Seiji Fukumoto; Takashi Shimada
Fibroblast growth factor (FGF)23 is proposed to play a physiological role in the regulation of phosphate and vitamin D metabolism; deranged circulatory levels of FGF23 cause several diseases with abnormal mineral metabolism. This paper presents a novel approach to analyze the mechanism of action of FGF23 using anti‐FGF23 monoclonal antibodies that can neutralize FGF23 activities both in vitro and in vivo. We developed two antibodies (FN1 and FC1) that recognize the N‐ and C‐terminal regions of FGF23, respectively. Both FN1 and FC1 inhibited FGF23 activity in a cell‐based Klotho‐dependent reporter assay. Their administration caused marked increases in serum phosphate and 1,25D levels in normal mice. These changes were accompanied by altered expression in the kidney of type IIa sodium‐phosphate cotransporter, 25‐hydroxyvitamin‐D‐1α‐hydroxylase, and 24‐hydroxylase. Thus, this study using neutralizing antibodies confirms that FGF23 is a physiological regulator of phosphate and vitamin D metabolism. We addressed the mechanism of action for these neutralizing antibodies. Structural analysis of the FGF23/FN1‐Fab complex showed that FN1 masked putative FGF receptor‐binding sites in the N‐terminal domain of FGF23, whereas biochemical analyses showed that FC1 interfered with the association between FGF23 and Klotho by binding to the C‐terminal domain of FGF23. Taken together, our results suggest that the N‐ and C‐terminal domains of FGF23 are responsible for association with cognate FGF receptors and Klotho, respectively, and that these interactions are indispensable for FGF23 activity.
Journal of Bone and Mineral Research | 2006
Yaacov Frishberg; Nobuaki Ito; Choni Rinat; Yuji Yamazaki; Sofia Feinstein; Itaru Urakawa; Paulina Navon-Elkan; Rachel Becker-Cohen; Takeyoshi Yamashita; Kaori Araya; Takashi Igarashi; Toshiro Fujita; Seiji Fukumoto
Two hyperphosphatemic patients with mutations in GALNT3 showed low intact FGF23 levels with marked increase of processed C‐terminal fragments. FGF23 protein has three O‐linked glycans and FGF23 with incomplete glycosylation is susceptible to processing. Silencing GALNT3 resulted in enhanced processing of FGF23. Decreased function of FGF23 by enhanced processing is the cause of hyperphosphatemia in patients with GALNT3 mutation.
Bone | 2008
Itsuro Endo; Seiji Fukumoto; Keiichi Ozono; Noriyuki Namba; Hiroyuki Tanaka; Daisuke Inoue; Masanori Minagawa; Toshitsugu Sugimoto; Mika Yamauchi; Toshimi Michigami; Toshio Matsumoto
Fibroblast growth factor 23 (FGF23) plays important roles in the development of hypophosphatemic diseases such as tumor-induced osteomalacia (TIO) and X-linked hypophosphatemic rickets/osteomalacia (XLH). However, clinical usefulness of measurement of FGF23 has not been established. The objective of this study is to examine the importance of FGF23 measurement in the diagnosis of hypophosphatemic diseases. Biochemical parameters concerning phosphate metabolism were analyzed in a cross-sectional study. 32 patients with TIO, 28 patients with XLH and 16 hypophosphatemic patients with other causes including vitamin D deficiency, Fanconis syndrome and Cushings syndrome were studied. In patients with TIO and XLH, FGF23 was above the upper limit of the reference range in most patients irrespective of medical treatment. The lowest FGF23 in these patients was 38.0 pg/ml. FGF23 in hypophosphatemic patients with other causes was undetectable (less than 3 pg/ml) in 12 patients and the highest FGF23 in this group was 23.9 pg/ml. Relationship between phosphate and FGF23 indicated that TIO and XLH are diseases with high FGF23 and hypophosphatemia judged by age-dependent reference ranges for serum phosphate. FGF23 measurement is useful for differential diagnosis of hypophosphatemic diseases caused by excess actions of FGF23 and other etiologies. High FGF23 with low phosphate judged by age-dependent reference ranges for phosphate establishes the diagnosis of diseases caused by excess actions of FGF23.
Bone | 2009
Yuichiro Shimizu; Yuko Tada; Mika Yamauchi; Takaaki Okamoto; Hisanori Suzuki; Nobuaki Ito; Seiji Fukumoto; Toshitsugu Sugimoto; Toshiro Fujita
Fibroblast growth factor 23 (FGF23) is a humoral factor that is produced by osteocytes and regulates phosphate and vitamin D metabolism. Several hypophosphatemic diseases including X-linked, autosomal dominant and autosomal recessive hypophosphatemic rickets/osteomalacia and tumor-induced rickets/osteomalacia are caused by excess actions of FGF23. These diseases are characterized by hypophosphatemia associated with impaired proximal tubular phosphate reabsorption and inappropriately low serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels for hypophosphatemia. Saccharated ferric oxide is widely used in Japan for iron-deficiency anemia. While it has been shown that saccharated ferric oxide induces hypophosphatemic osteomalacia, the mechanism of this hypophosphatemia remains to be clarified. We here describe three hypophosphatemic patients caused by intravenous administration of saccharated ferric oxide. Hypophosphatemia in these patients were associated with impaired renal tubular phosphate reabsorption, rather low serum 1,25(OH)(2)D and high FGF23 levels. All these biochemical features improved by the cessation of saccharated ferric oxide. These results indicate that hypophosphatemia caused by saccharated ferric oxide is another form of FGF23-related hypophosphatemia.
Kidney International | 2014
Rika Jimbo; Fumiko Kawakami-Mori; Shengyu Mu; Daigoro Hirohama; Bohumil Majtan; Yuichiro Shimizu; Yutaka Yatomi; Seiji Fukumoto; Toshiro Fujita; Tatsuo Shimosawa
Fibroblast growth factor 23 (FGF23) is a phosphate-regulating hormone that acts primarily on the kidney and parathyroid. With declining kidney function there is an increase in circulating FGF23 levels, which is associated with vascular calcification and mortality in chronic kidney disease. Whether FGF23 exerts direct effects on vasculature is unclear. We evaluated the expression of Klotho and FGF receptors in rat aortic rings and rat aorta vascular smooth muscle cells maintained in culture by reverse transcription-PCR, western blotting, and immunostaining. Signaling pathways underlying FGF23 effects were assessed by western blotting, and effects of FGF23 on osteogenic markers and phosphate transporters were assessed by real-time reverse transcription-PCR. We detected Klotho and FGFR1 in total aorta but not in vascular smooth muscle cells. FGF23 augmented phosphate-induced vascular calcification in the aortic rings from uremic rats and dose dependently increased ERK1/2 phosphorylation in Klotho-overexpressing but not naive vascular smooth muscle cells. FGF23-induced ERK1/2 phosphorylation was inhibited by SU5402 (FGFR1 inhibitor) and U0126 (MEK inhibitor). FGF23 enhanced phosphate-induced calcification in Klotho-overexpressing vascular smooth muscle cells and increased osteoblastic marker expression, which was inhibited by U0126. In contrast, phosphate transporter expression was not affected by phosphate or FGF23. Thus, FGF23 enhances phosphate-induced vascular calcification by promoting osteoblastic differentiation involving the ERK1/2 pathway.
Journal of Bone and Mineral Research | 2011
Yukiko Aono; Hisashi Hasegawa; Yuji Yamazaki; Takashi Shimada; Toshiro Fujita; Takeyoshi Yamashita; Seiji Fukumoto
Fibroblast growth factor 23 (FGF‐23) plays causative roles in the development of several hypophosphatemic rickets/osteomalacia such as X‐linked hypophosphatemic rickets/osteomalacia (XLH) and tumor‐induced rickets/osteomalacia. Patients with hypophosphatemic rickets/osteomalacia often complain of muscle weakness and bone pain that severely affect daily activities of these patients. The purpose of this study was to examine whether anti‐FGF‐23 antibodies, which have been shown to improve hypophosphatemia and rachitic changes of juvenile Hyp mice in a murine model of XLH, also ameliorate hypophosphatemic osteomalacia and affect muscle force and spontaneous motor activity in adult Hyp mice. Repeated injections of anti‐FGF‐23 antibodies increased serum phosphate and 1,25‐dihydroxyvitmain D levels and enhanced mineralization of osteoid in adult Hyp mice, whereas bone length did not change. We found that grip strength was weaker and that spontaneous movement was less in adult Hyp mice than in wild‐type mice. In addition, FGF‐23 antibodies increased grip strength and spontaneous movement. These results suggest that the inhibition of excess FGF‐23 action not only ameliorates hypophosphatemia and impaired mineralization of bone but also improves muscle weakness and daily activities of patients with FGF‐23‐related hypophosphatemic rickets/osteomalacia.