Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Itaru Yanagi is active.

Publication


Featured researches published by Itaru Yanagi.


Nanotechnology | 2014

Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter

Rena Akahori; Takanobu Haga; Toshiyuki Hatano; Itaru Yanagi; Takeshi Ohura; Hirotaka Hamamura; Tomio Iwasaki; Takahide Yokoi; Takashi Anazawa

To slow the translocation of single-stranded DNA (ssDNA) through a solid-state nanopore, a nanopore was narrowed, and the effect of the narrowing on the DNA translocation speed was investigated. In order to accurately measure the speed, long (5.3 kb) ssDNA (namely, ss-poly(dA)) with uniform length (±0.4 kb) was synthesized. The diameters of nanopores fabricated by a transmission electron microscope were controlled by atomic-layer deposition. Reducing the nanopore diameter from 4.5 to 2.3 nm slowed down the translocation of ssDNA by more than 16 times (to 0.18 μs base(-1)) when 300 mV was applied across the nanopore. It is speculated that the interaction between the nanopore and the ssDNA dominates the translocation speed. Unexpectedly, the translocation speed of ssDNA through the 4.5 nm nanopore is more than two orders of magnitude higher than that of double-stranded DNA (dsDNA) through a nanopore of almost the same size. The cause of such a faster translocation of ssDNA can be explained by the weaker drag force inside the nanopore. Moreover, the measured translocation speeds of ssDNA and dsDNA agree well with those calculated by molecular-dynamics (MD) simulation. The MD simulation predicted that reducing the nanopore diameter to almost the same as that of ssDNA (i.e. 1.4 nm) decreases the translocation speed (to 1.4 μs base(-1)). Narrowing the nanopore is thus an effective approach for accomplishing nanopore DNA sequencing.


Scientific Reports | 2015

Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.

Itaru Yanagi; Takeshi Ishida; Koji Fujisaki; Kenichi Takeda

To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed.


Scientific Reports | 2016

Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction

Yusuke Goto; Itaru Yanagi; Kazuma Matsui; Takahide Yokoi; Kenichi Takeda

The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid nanopore fabrication, we introduced a controlled dielectric breakdown (CDB) process into our system. DNA translocation experiments revealed that single nanopores were created by the CDB process without sacrificing performance in reducing DNA movement speed by up to 10 μs/base or reducing noise up to 600 pArms at 1 MHz. Our platform provides the essential components for proceeding to the next step in the process of DNA sequencing.


Scientific Reports | 2015

Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure.

Yusuke Goto; Takanobu Haga; Itaru Yanagi; Takahide Yokoi; Kenichi Takeda

DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This decelerating effect originates from the strong interaction between ssDNA and the chemical group on the surface of the bead. This nanostructure was simply prepared by dip coating in which a substrate with a nanopore was immersed in a silica bead solution and then dried in an oven. As compared with conventional approaches, our novel method is less laborious, simpler to perform and more effective in reducing ssDNA translocation speed.


Scientific Reports | 2016

Prevention of Dielectric Breakdown of Nanopore Membranes by Charge Neutralization.

Kazuma Matsui; Itaru Yanagi; Yusuke Goto; Kenichi Takeda

To achieve DNA sequencing using a solid-state nanopore, it is necessary to reduce the electric noise current. The noise current can be decreased by reducing the capacitance (C) of the nanopore device. However, we found that an electric-charge difference (ΔQ) between the electrolyte in one chamber and the electrolyte in another chamber occurred. For low capacitance devices, this electric-charge imbalance can lead to unexpectedly high voltage (ΔV = ΔQ/C) which disrupted the membrane when the two electrolytes were independently poured into the chambers. We elucidated the mechanism for the generation of initial defects and established new procedures for preventing the generation of defects by connecting an electric bypass between the chambers.


Journal of Applied Physics | 2017

Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in solution

Itaru Yanagi; Koji Fujisaki; Hirotaka Hamamura; Kenichi Takeda

Recently, dielectric breakdown of solid-state membranes in solution has come to be known as a powerful method for fabricating nanopore sensors. This method has enabled a stable fabrication of nanopores down to sub-2 nm in diameter, which can be used to detect the sizes and structures of small molecules. Until now, the behavior of dielectric breakdown for nanopore creation in SiN membranes with thicknesses of less than 10 nm has not been studied, while the thinner nanopore membranes are preferable for nanopore sensors in terms of spatial resolution. In the present study, the thickness dependence of the dielectric breakdown of sub-10-nm-thick SiN membranes in solution was investigated using gradually increased voltage pulses. The increment in leakage current through the membrane at the breakdown was found to become smaller with a decrease in the thickness of the membrane, which resulted in the creation of smaller nanopores. In addition, the electric field for dielectric breakdown drastically decreased when ...


Applied Physics Letters | 2016

Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

Tatsuki Takakura; Itaru Yanagi; Yasushi Goto; Yu Ishige; Yoshinobu Kohara

We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.


international electron devices meeting | 2013

A novel side-gated ultrathin-channel nanopore FET (SGNAFET) sensor for direct DNA sequencing

Itaru Yanagi; Takeshi Oura; Takanobu Haga; Masahiko Ando; Jiro Yamamoto; Toshiyuki Mine; Takeshi Ishida; Toshiyuki Hatano; Rena Akahori; Takahide Yokoi; Takashi Anazawa; Yasushi Goto

A novel side-gated ultrathin-channel nanopore FET (SGNAFET), for fast and label-free DNA sequencing with high resolution and sensitivity, is proposed. The goal of the SGNAFET is to identify the four types of nucleotides in DNA by changes in the channel current of the SGNAFET. Aiming to reach that goal, a SGNAFET with channel thickness (tch.) of 2 or 4 nm was successfully operated and could detect DNA translocations through its nanopore on the basis of changes in its channel current.


Scientific Reports | 2017

Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion

Rena Akahori; Itaru Yanagi; Yusuke Goto; Kunio Harada; Takahide Yokoi; Kenichi Takeda

To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled using a piezo actuator and stepper motor. The area of the Si probe was larger than the area of the membrane, which meant that the immobilized DNA could enter the nanopore without the need for the probe to scan to determine the location of the nanopore in the membrane. We demonstrated that a single-stranded DNA could be inserted into and removed from a nanopore in our experimental system. The number of different ionic-current levels observed while DNA remained in the nanopore corresponded to the number of different types of homopolymers in the DNA.


Nanotechnology | 2016

Side-gated ultrathin-channel nanopore FET sensors

Itaru Yanagi; Takeshi Oura; Takanobu Haga; Masahiko Ando; Jiro Yamamoto; Toshiyuki Mine; Takeshi Ishida; Toshiyuki Hatano; Rena Akahori; Takahide Yokoi; Takashi Anazawa

A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFETs drain current during DNA translocation through the nanopore.

Collaboration


Dive into the Itaru Yanagi's collaboration.

Researchain Logo
Decentralizing Knowledge