Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iurii Semenov is active.

Publication


Featured researches published by Iurii Semenov.


Biochimica et Biophysica Acta | 2013

Primary pathways of intracellular Ca2+ mobilization by nanosecond pulsed electric field

Iurii Semenov; Shu Xiao; Andrei G. Pakhomov

Permeabilization of cell membranous structures by nanosecond pulsed electric field (nsPEF) triggers transient rise of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which determines multifarious downstream effects. By using fast ratiometric Ca(2+) imaging with Fura-2, we quantified the external Ca(2+) uptake, compared it with Ca(2+) release from the endoplasmic reticulum (ER), and analyzed the interplay of these processes. We utilized CHO cells which lack voltage-gated Ca(2+) channels, so that the nsPEF-induced [Ca(2+)](i) changes could be attributed primarily to electroporation. We found that a single 60-ns pulse caused fast [Ca(2+)](i) increase by Ca(2+) influx from the outside and Ca(2+) efflux from the ER, with the E-field thresholds of about 9 and 19kV/cm, respectively. Above these thresholds, the amplitude of [Ca(2+)](i) response increased linearly by 8-10nM per 1kV/cm until a critical level between 200 and 300nM of [Ca(2+)](i) was reached. If the critical level was reached, the nsPEF-induced Ca(2+) signal was amplified up to 3000nM by engaging the physiological mechanism of Ca(2+)-induced Ca(2+)-release (CICR). The amplification was prevented by depleting Ca(2+) from the ER store with 100nM thapsigargin, as well as by blocking the ER inositol-1,4,5-trisphosphate receptors (IP(3)R) with 50μM of 2-aminoethoxydiphenyl borate (2-APB). Mobilization of [Ca(2+)](i) by nsPEF mimicked native Ca(2+) signaling, but without preceding activation of plasma membrane receptors or channels. NsPEF stimulation may serve as a unique method to mobilize [Ca(2+)](i) and activate downstream cascades while bypassing the plasma membrane receptors.


Biochimica et Biophysica Acta | 2015

Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane

Andrei G. Pakhomov; Elena C. Gianulis; P. Thomas Vernier; Iurii Semenov; Shu Xiao; Olga N. Pakhomova

Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at<4μM) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60ns, 13.2kV/cm, 10Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter.


PLOS ONE | 2013

Two Modes of Cell Death Caused by Exposure to Nanosecond Pulsed Electric Field

Olga N. Pakhomova; Betsy Gregory; Iurii Semenov; Andrei G. Pakhomov

High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity (“nanoelectroporation”), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6–24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.


Cell Calcium | 2013

Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: The impact of pulse duration

Iurii Semenov; Shu Xiao; Olga N. Pakhomova; Andrei G. Pakhomov

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca(2+)-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200-300 nM, the transients were amplified by calcium-induced calcium release. We conclude that nanosecond stimuli mimic Ca2+ signaling while bypassing the usual receptor- and channels-mediated cascades. The recruitment of the intracellular Ca2+ can be controlled by the duration of the stimulus.


Biochemical and Biophysical Research Communications | 2014

Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses

Bennett L. Ibey; Jody C. Ullery; Olga N. Pakhomova; Caleb C. Roth; Iurii Semenov; Hope T. Beier; Melissa Tarango; Shu Xiao; Karl H. Schoenbach; Andrei G. Pakhomov

Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, propidium iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium concentration or PI uptake and cause less membrane reorganization (FM1-43) than MP pulses. Twenty-four hour survival was measured in three cell lines (Jurkat, U937, CHO) and over ten times more BP pulses were required to induce death as compared to MP pulses of similar magnitude and duration. Flow cytometry analysis of CHO cells after exposure (at 15 min) revealed that to achieve positive FITC-Annexin V and PI expression, ten times more BP pulses were required than MP pulses. Overall, unlike longer pulse exposures, BP nsPEF exposures proved far less effective at both membrane permeabilization and cell killing than MP nsPEF.


Biochimica et Biophysica Acta | 2014

Calcium-mediated pore expansion and cell death following nanoelectroporation

Olga N. Pakhomova; Betsy Gregory; Iurii Semenov; Andrei G. Pakhomov

Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca(2+) after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca(2+) level from the nominal 2-5μM to 2mM for the first 60-90min after permeabilization by 300-nsPEF increased the early (necrotic) death in U937, CHO, and BPAE cells. With nominal Ca(2+), the inhibition of osmotic swelling rescued cells from the early necrosis and increased caspase 3/7 activation later on. However, the inhibition of swelling had a modest or no protective effect with 2mM Ca(2+) in the medium. With the nominal Ca(2+), most cells displayed gradual increase in YO-PRO-1 and propidium (Pr) uptake. With 2mM Ca(2+), the initially lower Pr uptake was eventually replaced by a massive and abrupt Pr entry (necrotic death). It was accompanied by a transient acceleration of the growth of membrane blebs due to the increase of the intracellular osmotic pressure. We conclude that the high-Ca(2+)-dependent necrotic death in nsPEF-treated cells is effected by a delayed, sudden, and osmotically-independent pore expansion (or de novo formation of larger pores), but not by the membrane rupture.


Bioelectrochemistry | 2015

Cell stimulation and calcium mobilization by picosecond electric pulses

Iurii Semenov; Shu Xiao; Dongkoo Kang; Karl H. Schoenbach; Andrei G. Pakhomov

We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca(2+) was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca(2+) in both GH3 (by 114 ± 48 nM) and NG108 cells (by 6 ± 1.1 nM). Trains of 100 psEP amplified the response to 379 ± 33 nM and 719 ± 315 nM, respectively. Ca(2+) responses peaked within 2-15s and recovered for over 100 s; they were 80-100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na(+) with N-methyl-D-glucamine. There was no response to psEP in Ca(2+)-free medium, but adding external Ca(2+) even 10s later evoked Ca(2+) response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 K per psEP), or membrane depolarization by opening of VG Na(+) channels.


Bioelectrochemistry | 2015

Ion transport into cells exposed to monopolar and bipolar nanosecond pulses.

Karl H. Schoenbach; Andrei G. Pakhomov; Iurii Semenov; Shu Xiao; Olga N. Pakhomova; Bennett L. Ibey

Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to those obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of 10 μs.


Bioelectrochemistry | 2014

Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling

Andrei G. Pakhomov; Shu Xiao; Olga N. Pakhomova; Iurii Semenov; Marjorie A. Kuipers; Bennett L. Ibey

Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance.


The Journal of Physiology | 2011

BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

Iurii Semenov; Bin Wang; Jeremiah T. Herlihy; Robert Brenner

Non‐technical summary  Parasympathetic nerve activation of M3 and M2 muscarinic acetylcholine receptors initiates and modulates calcium release from the sarcoplasmic reticulum to control airway smooth muscle contraction. Here we investigate M2 acetylcholine receptors that also contribute to contraction through depolarization and recruitment of voltage‐dependent calcium channels (VDCCs). We find that the calcium‐ and voltage‐activated potassium channel (BK channel) and its β1 accessory subunit are important proteins that oppose M2‐mediated contraction of airway smooth muscle. BK channels contribute to a negative baseline membrane voltage from which M2‐mediated depolarization only weakly activates VDCCs. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L‐type VDCCs to contraction that otherwise does not occur with M2 receptor antagonist or with β1 containing BK channels. These findings provide a better understanding of how cholinergic second messenger signalling impinges on voltage‐dependent mechanisms and excitation–contraction coupling of smooth muscle.

Collaboration


Dive into the Iurii Semenov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Xiao

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

Robert Brenner

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Wang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jeremiah T. Herlihy

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bennett L. Ibey

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge