Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maura Casciola is active.

Publication


Featured researches published by Maura Casciola.


Journal of Physical Chemistry B | 2013

Molecular Dynamics Simulations of Ion Conductance in Field-Stabilized Nanoscale Lipid Electropores

Ming-Chak Ho; Maura Casciola; Zachary A. Levine; P. Thomas Vernier

Molecular dynamics (MD) simulations of electrophoretic transport of monovalent ions through field-stabilized electropores in POPC lipid bilayers permit systematic characterization of the conductive properties of lipid nanopores. The radius of the electropore can be controlled by the magnitude of the applied sustaining external electric field, which also drives the transport of ions through the pore. We examined pore conductances for two monovalent salts, NaCl and KCl, at physiological concentrations. Na(+) conductance is significantly less than K(+) and Cl(-) conductance and is a nonlinear function of pore radius over the range of pore radii investigated. The single pore electrical conductance of KCl obtained from MD simulation is comparable to experimental values measured by chronopotentiometry.


IEEE Transactions on Biomedical Engineering | 2013

Moveable Wire Electrode Microchamber for Nanosecond Pulsed Electric-Field Delivery

Yu-Hsuan Wu; D. Arnaud-Cormos; Maura Casciola; Jason M. Sanders; P. Leveque; P. T. Vernier

In this paper, an electromagnetic characterization of a moveable wire electrode microchamber for nanosecond pulse delivery is proposed. The characterization of the exposure system was carried out through experimental measurements and numerical simulations. The frequency and time domain analyses demonstrate the utility of the proposed assembly for delivering pulses as short as 2.5 ns. High-voltage measurements (~1.2 kV) were also performed using pulse generators based on two different technologies with applied pulse durations of 5.0 and 2.5 ns. Validation of the delivery system was accomplished with biological experiments involving cell electroporation with 2.5 and 5.0 ns, 10-MV/m pulsed electric fields. A dose-dependent area increase (osmotic swelling) of the Jurkat cells was observed with pulses as short as 2.5 ns.


Biochimica et Biophysica Acta | 2016

A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields ☆

Maura Casciola; Mounir Tarek

The transport of chemical compounds across the plasma membrane into the cell is relevant for several biological and medical applications. One of the most efficient techniques to enhance this uptake is reversible electroporation. Nevertheless, the detailed molecular mechanism of transport of chemical species (dyes, drugs, genetic materials, …) following the application of electric pulses is not yet fully elucidated. In the past decade, molecular dynamics (MD) simulations have been conducted to model the effect of pulsed electric fields on membranes, describing several aspects of this phenomenon. Here, we first present a comprehensive review of the results obtained so far modeling the electroporation of lipid membranes, then we extend these findings to study the electrotransfer across lipid bilayers subject to microsecond pulsed electric fields of Tat11, a small hydrophilic charged peptide, and of siRNA. We use in particular a MD simulation protocol that allows to characterize the transport of charged species through stable pores. Unexpectedly, our results show that for an electroporated bilayer subject to transmembrane voltages in the order of 500mV, i.e. consistent with experimental conditions, both Tat11 and siRNA can translocate through nanoelectropores within tens of ns. We discuss these results in comparison to experiments in order to rationalize the mechanism of drug uptake by cells. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Bioelectrochemistry | 2016

Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance

Maura Casciola; Marina A. Kasimova; Lea Rems; Sara Zullino; Francesca Apollonio; Mounir Tarek

Molecular dynamics (MD) simulations have become a powerful tool to study electroporation (EP) in atomic detail. In the last decade, numerous MD studies have been conducted to model the effect of pulsed electric fields on membranes, providing molecular models of the EP process of lipid bilayers. Here we extend these investigations by modeling for the first time conditions comparable to experiments using long (μs-ms) low intensity (~kV/cm) pulses, by studying the characteristics of pores formed in lipid bilayers maintained at a constant surface tension and subject to constant charge imbalance. This enables the evaluation of structural (size) and electrical (conductance) properties of the pores formed, providing information hardly accessible directly by experiments. Extensive simulations of EP of simple phosphatidylcholine bilayers in 1M NaCl show that hydrophilic pores with stable radii (1-2.5 nm) form under transmembrane voltages between 420 and 630 mV, allowing for ionic conductance in the range of 6.4-29.5 nS. We discuss in particular these findings and characterize both convergence and size effects in the MD simulations. We further extend these studies in a follow-up paper (Rems et al., Bioelectrochemistry, Submitted), by proposing an improved continuum model of pore conductance consistent with the results from the MD simulations.


Bioelectrochemistry | 2016

Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations

Lea Rems; Mounir Tarek; Maura Casciola; Damijan Miklavčič

Electrical conductance of an aqueous pore in the lipid bilayer has an important role in the process of membrane electroporation, i.e., formation of pores induced by electric pulses. In our present study we compare the pore conductance as predicted by a theoretical model based on the continuum Poisson-Nernst-Planck theory to the pore conductance obtained with molecular dynamics simulations (Casciola et al., Bioelectrochemistry 109:108-116, 2016). Our analysis demonstrates that the Poisson-Nernst-Planck model is able to quantitatively predict the dependence of the pore conductance on the pore radius when considering the toroidal shape of the pore. In order to correctly describe the difference in the pore conductance for Cl and Na ions (the pore selectivity), however, it is necessary to take into account the electric double layer next to the lipid-water interface and the electroosmotic flow through the pore. We further show that simplified analytical descriptions of pore conductance can lead to incorrect predictions of the pore size extracted from experimental measurements, and can affect the predictions of electroporation models. Overall, this study demonstrates that continuum modeling can be efficiently used as complementary method to molecular scale models for investigating lipid pores.


Bioelectrochemistry | 2018

Electropermeabilization by uni- or bipolar nanosecond electric pulses: The impact of extracellular conductivity

Elena C. Gianulis; Maura Casciola; Shu Xiao; Olga N. Pakhomova; Andrei G. Pakhomov

Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4-40kV/cm) with increasing interpulse intervals (0.1-50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short (<1μs), interpulse intervals. Finally, bipolar cancellation was still present with interpulse intervals as long as 50μs, beyond the time expected for membrane discharge. Our findings do not support assisted membrane discharge as the mechanism for bipolar cancellation. Instead they exemplify the sustained action of nsEP that can be reversed long after the initial stimulus.


Biochimica et Biophysica Acta | 2017

Neuronal excitation and permeabilization by 200-ns pulsed electric field: An optical membrane potential study with FluoVolt dye

Andrei G. Pakhomov; Iurii Semenov; Maura Casciola; Shu Xiao

Electric field pulses of nano- and picosecond duration are a novel modality for neurostimulation, activation of Ca2+ signaling, and tissue ablation. However it is not known how such brief pulses activate voltage-gated ion channels. We studied excitation and electroporation of hippocampal neurons by 200-ns pulsed electric field (nsPEF), by means of time-lapse imaging of the optical membrane potential (OMP) with FluoVolt dye. Electroporation abruptly shifted OMP to a more depolarized level, which was reached within <1ms. The OMP recovery started rapidly (τ=8-12ms) but gradually slowed down (to τ>10s), so cells remained above the resting OMP level for at least 20-30s. Activation of voltage-gated sodium channels (VGSC) enhanced the depolarizing effect of electroporation, resulting in an additional tetrodotoxin-sensitive OMP peak in 4-5ms after nsPEF. Omitting Ca2+ in the extracellular solution did not reduce the depolarization, suggesting no contribution of voltage-gated calcium channels (VGCC). In 40% of neurons, nsPEF triggered a single action potential (AP), with the median threshold of 3kV/cm (range: 1.9-4kV/cm); no APs could be evoked by stimuli below the electroporation threshold (1.5-1.9kV/cm). VGSC opening could already be detected in 0.5ms after nsPEF, which is too fast to be mediated by the depolarizing effect of electroporation. The overlap of electroporation and AP thresholds does not necessarily reflect the causal relation, but suggests a low potency of nsPEF, as compared to conventional electrostimulation, for VGSC activation and AP induction.


Technology in Cancer Research & Treatment | 2017

Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo

Claudia Muratori; Andrei G. Pakhomov; Loree C. Heller; Maura Casciola; Elena C. Gianulis; Sergey Grigoryev; Shu Xiao; Olga N. Pakhomova

Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose–treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.


Scientific Reports | 2017

Damage-free peripheral nerve stimulation by 12-ns pulsed electric field

Maura Casciola; Shu Xiao; Andrei G. Pakhomov

Modern technologies enable deep tissue focusing of nanosecond pulsed electric field (nsPEF) for non-invasive nerve and muscle stimulation. However, it is not known if PEF orders of magnitude shorter than the activation time of voltage-gated sodium channels (VGSC) would evoke action potentials (APs). One plausible scenario requires the loss of membrane integrity (electroporation) and resulting depolarization as an intermediate step. We report, for the first time, that the excitation of a peripheral nerve can be accomplished by 12-ns PEF without electroporation. 12-ns stimuli at 4.1–11 kV (3.3–8.8 kV/cm) evoked APs similarly to conventional stimuli (100–250 μs, 1–5 V, 103–515 V/m), except for having higher selectivity for the faster nerve fibers. Nerves sustained repeated tetanic stimulations (50 Hz or 100 Hz for 1 min) alternately by 12-ns PEF and by conventional pulses. Such tetani caused a modest AP decrease, to a similar extent for both types of stimuli. Nerve refractory properties were not affected. The lack of cumulative damages even from tens of thousands of 12-ns stimuli and the similarities with the conventional stimulation prove VGSC activation by nsPEF without nerve membrane damage.


Journal of Biological Chemistry | 2017

Activation of the phospholipid scramblase TMEM16F by nanosecond pulsed electric field (nsPEF) facilitates its diverse cytophysiological effects

Claudia Muratori; Andrei G. Pakhomov; Elena C. Gianulis; Jade Meads; Maura Casciola; Peter A. Mollica; Olga N. Pakhomova

Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, Tmem16f expression knockdown and TMEM16F-specific inhibition decreased nsPEF-induced PS exposure by 49 and 42%, respectively. Moreover, the Tmem16f silencing significantly decreased Ca2+-dependent chloride channel currents activated in response to the nanoporation. Tmem16f expression also affected nsPEF-induced cell blebbing, with only 20% of the silenced cells developing blebs compared with 53% of the control cells. This inhibition of cellular blebbing correlated with a 25% decrease in cytosolic free Ca2+ transient at 30 s after nanoporation. Finally, in TMEM16F-overexpressing cells, a train of 120 pulses (300 ns, 20 Hz, 6 kV/cm) decreased cell survival to 34% compared with 51% in control cells (*, p < 0.01). Taken together, these results indicate that TMEM16F activation by nanoporation mediates and enhances the diverse cellular effects of nsPEF.

Collaboration


Dive into the Maura Casciola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Xiao

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Micaela Liberti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnese Denzi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge