Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iva Gunnarsson is active.

Publication


Featured researches published by Iva Gunnarsson.


The New England Journal of Medicine | 2008

Association of Systemic Lupus Erythematosus with C8orf13–BLK and ITGAM–ITGAX

Geoffrey Hom; Robert R. Graham; Barmak Modrek; Kimberly E. Taylor; Ward Ortmann; Sophie Garnier; Annette Lee; Sharon A. Chung; Ricardo C. Ferreira; P.V. Krishna Pant; Dennis G. Ballinger; Roman Kosoy; F. Yesim Demirci; M. Ilyas Kamboh; Amy H. Kao; Chao Tian; Iva Gunnarsson; Anders Bengtsson; Solbritt Rantapää-Dahlqvist; Michelle Petri; Susan Manzi; Michael F. Seldin; Lars Rönnblom; Ann-Christine Syvänen; Lindsey A. Criswell; Peter K. Gregersen; Timothy W. Behrens

BACKGROUND Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease in which the risk of disease is influenced by complex genetic and environmental contributions. Alleles of HLA-DRB1, IRF5, and STAT4 are established susceptibility genes; there is strong evidence for the existence of additional risk loci. METHODS We genotyped more than 500,000 single-nucleotide polymorphisms (SNPs) in DNA samples from 1311 case subjects with SLE and 1783 control subjects; all subjects were North Americans of European descent. Genotypes from 1557 additional control subjects were obtained from public data repositories. We measured the association between the SNPs and SLE after applying strict quality-control filters to reduce technical artifacts and to correct for the presence of population stratification. Replication of the top loci was performed in 793 case subjects and 857 control subjects from Sweden. RESULTS Genetic variation in the region upstream from the transcription initiation site of the gene encoding B lymphoid tyrosine kinase (BLK) and C8orf13 (chromosome 8p23.1) was associated with disease risk in both the U.S. and Swedish case-control series (rs13277113; odds ratio, 1.39; P=1x10(-10)) and also with altered levels of messenger RNA in B-cell lines. In addition, variants on chromosome 16p11.22, near the genes encoding integrin alpha M (ITGAM, or CD11b) and integrin alpha X (ITGAX), were associated with SLE in the combined sample (rs11574637; odds ratio, 1.33; P=3x10(-11)). CONCLUSIONS We identified and then confirmed through replication two new genetic loci for SLE: a promoter-region allele associated with reduced expression of BLK and increased expression of C8orf13 and variants in the ITGAM-ITGAX region.


Nature Genetics | 2002

A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans

Ludmila Prokunina; Casimiro Castillejo-López; Fredrik Öberg; Iva Gunnarsson; Louise Berg; Veronica Magnusson; Anthony J. Brookes; Dmitry Tentler; Helga Kristjansdottir; Gerdur Gröndal; Anne Isine Bolstad; Elisabet Svenungsson; Ingrid E. Lundberg; Gunnar Sturfelt; Andreas Jönssen; Lennart Truedsson; Guadalupe Lima; Jorge Alcocer-Varela; Roland Jonsson; Ulf Gyllensten; John B. Harley; Donato Alarcón-Segovia; Kristjan Steinsson; Marta E. Alarcón-Riquelme

Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women. A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified. We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families. Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease. Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P = 0.00001, r.r. (relative risk) = 2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P = 0.0009, r.r. = 3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans.


Nature Genetics | 2009

A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus

Vesela Gateva; Johanna K. Sandling; Geoff Hom; Kimberly E. Taylor; Sharon A. Chung; Xin Sun; Ward Ortmann; Roman Kosoy; Ricardo C. Ferreira; Gunnel Nordmark; Iva Gunnarsson; Elisabet Svenungsson; Leonid Padyukov; Gunnar Sturfelt; Andreas Jönsen; Anders Bengtsson; Solbritt Rantapää-Dahlqvist; Emily C. Baechler; Elizabeth E. Brown; Graciela S. Alarcón; Jeffrey C. Edberg; Rosalind Ramsey-Goldman; Gerald McGwin; John D. Reveille; Luis M. Vilá; Robert P. Kimberly; Susan Manzi; Michelle Petri; Annette Lee; Peter K. Gregersen

Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 × 10−8): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P≤ 1 × 10−5. A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 × 10−3) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.


The New England Journal of Medicine | 2012

Genetically Distinct Subsets within ANCA-Associated Vasculitis

Paul A. Lyons; Tim F. Rayner; Sapna Trivedi; Julia U. Holle; Richard A. Watts; David Jayne; Bo Baslund; Paul Brenchley; Annette Bruchfeld; Afzal N. Chaudhry; Jan Willem Cohen Tervaert; Panos Deloukas; C. Feighery; W. L. Gross; Loïc Guillevin; Iva Gunnarsson; Lorraine Harper; Zdenka Hruskova; Mark A. Little; Davide Martorana; Thomas Neumann; Sophie Ohlsson; Sandosh Padmanabhan; Charles D. Pusey; Alan D. Salama; Jan Stephan Sanders; C. O. S. Savage; Mårten Segelmark; Coen A. Stegeman; Vladimir Tesar

BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegeners granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis. METHODS A genomewide association study was performed in a discovery cohort of 1233 U.K. patients with ANCA-associated vasculitis and 5884 controls and was replicated in 1454 Northern European case patients and 1666 controls. Quality control, population stratification, and statistical analyses were performed according to standard criteria. RESULTS We found both major-histocompatibility-complex (MHC) and non-MHC associations with ANCA-associated vasculitis and also that granulomatosis with polyangiitis and microscopic polyangiitis were genetically distinct. The strongest genetic associations were with the antigenic specificity of ANCA, not with the clinical syndrome. Anti-proteinase 3 ANCA was associated with HLA-DP and the genes encoding α(1)-antitrypsin (SERPINA1) and proteinase 3 (PRTN3) (P=6.2×10(-89), P=5.6×10(-12,) and P=2.6×10(-7), respectively). Anti-myeloperoxidase ANCA was associated with HLA-DQ (P=2.1×10(-8)). CONCLUSIONS This study confirms that the pathogenesis of ANCA-associated vasculitis has a genetic component, shows genetic distinctions between granulomatosis with polyangiitis and microscopic polyangiitis that are associated with ANCA specificity, and suggests that the response against the autoantigen proteinase 3 is a central pathogenic feature of proteinase 3 ANCA-associated vasculitis. These data provide preliminary support for the concept that proteinase 3 ANCA-associated vasculitis and myeloperoxidase ANCA-associated vasculitis are distinct autoimmune syndromes. (Funded by the British Heart Foundation and others.).


Nature Genetics | 2008

Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus

Sergey V. Kozyrev; Anna Karin Abelson; Jérôme Wojcik; Ammar Zaghlool; M. V. Prasad Linga Reddy; Elena Sánchez; Iva Gunnarsson; Elisabet Svenungsson; Gunnar Sturfelt; Andreas Jönsen; Lennart Truedsson; Bernardo A. Pons-Estel; Torsten Witte; Sandra D'Alfonso; Nadia Barrizzone; Maria Giovanna Danieli; Carmen Gutiérrez; Ana Suárez; Peter Junker; Helle Laustrup; María Francisca González-Escribano; Javier Martin; Hadi Abderrahim; Marta E. Alarcón-Riquelme

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by production of autoantibodies and complex genetic inheritance. In a genome-wide scan using 85,042 SNPs, we identified an association between SLE and a nonsynonymous substitution (rs10516487, R61H) in the B-cell scaffold protein with ankyrin repeats gene, BANK1. We replicated the association in four independent case-control sets (combined P = 3.7 × 10−10; OR = 1.38). We analyzed BANK1 cDNA and found two isoforms, one full-length and the other alternatively spliced and lacking exon 2 (Δ2), encoding a protein without a putative IP3R-binding domain. The transcripts were differentially expressed depending on a branch point–site SNP, rs17266594, in strong linkage disequilibrium (LD) with rs10516487. A third associated variant was found in the ankyrin domain (rs3733197, A383T). Our findings implicate BANK1 as a susceptibility gene for SLE, with variants affecting regulatory sites and key functional domains. The disease-associated variants could contribute to sustained B cell–receptor signaling and B-cell hyperactivity characteristic of this disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus

Robert R. Graham; Chieko Kyogoku; Snaevar Sigurdsson; Irina A. Vlasova; Leela Davies; Emily C. Baechler; Robert M. Plenge; Thearith Koeuth; Ward Ortmann; Geoffrey Hom; Jason W. Bauer; Clarence Gillett; Noël P. Burtt; Deborah S. Cunninghame Graham; Robert C. Onofrio; Michelle Petri; Iva Gunnarsson; Elisabet Svenungsson; Lars Rönnblom; Gunnel Nordmark; Peter K. Gregersen; Kathy L. Moser; Patrick M. Gaffney; Lindsey A. Criswell; Timothy J. Vyse; Ann-Christine Syvänen; Paul R. Bohjanen; Mark J. Daly; Timothy W. Behrens; David Altshuler

Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3′ UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.


Human Molecular Genetics | 2008

A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5

Snaevar Sigurdsson; Gunnel Nordmark; Sophie Garnier; Elin Grundberg; Tony Kwan; Olof Nilsson; Maija Leena Eloranta; Iva Gunnarsson; Elisabet Svenungsson; Gunnar Sturfelt; Anders Bengtsson; Andreas Jönsen; Lennart Truedsson; Solbritt Rantapää-Dahlqvist; Catharina Eriksson; Gunnar V. Alm; Harald H H Göring; Tomi Pastinen; Ann-Christine Syvänen; Lars Rönnblom

Systemic lupus erythematosus (SLE) is the prototype autoimmune disease where genes regulated by type I interferon (IFN) are over-expressed and contribute to the disease pathogenesis. Because signal transducer and activator of transcription 4 (STAT4) plays a key role in the type I IFN receptor signaling, we performed a candidate gene study of a comprehensive set of single nucleotide polymorphism (SNPs) in STAT4 in Swedish patients with SLE. We found that 10 out of 53 analyzed SNPs in STAT4 were associated with SLE, with the strongest signal of association (P = 7.1 × 10−8) for two perfectly linked SNPs rs10181656 and rs7582694. The risk alleles of these 10 SNPs form a common risk haplotype for SLE (P = 1.7 × 10−5). According to conditional logistic regression analysis the SNP rs10181656 or rs7582694 accounts for all of the observed association signal. By quantitative analysis of the allelic expression of STAT4 we found that the risk allele of STAT4 was over-expressed in primary human cells of mesenchymal origin, but not in B-cells, and that the risk allele of STAT4 was over-expressed (P = 8.4 × 10−5) in cells carrying the risk haplotype for SLE compared with cells with a non-risk haplotype. The risk allele of the SNP rs7582694 in STAT4 correlated to production of anti-dsDNA (double-stranded DNA) antibodies and displayed a multiplicatively increased, 1.82-fold risk of SLE with two independent risk alleles of the IRF5 (interferon regulatory factor 5) gene.


Annals of the Rheumatic Diseases | 2007

Treatment of refractory SLE with rituximab plus cyclophosphamide: clinical effects, serological changes, and predictors of response.

Thórunn Jónsdóttir; Iva Gunnarsson; A Risselada; Elisabet Welin Henriksson; L Klareskog; R. van Vollenhoven

Objective: To evaluate efficacy, serological responses, and predictors of response in patients with severe and refractory systemic lupus erythematosus (SLE) treated with rituximab plus cyclophosphamide. Methods: 16 patients entered a treatment protocol using rituximab plus cyclophosphamide. Disease activity was assessed by the SLE disease activity index (SLEDAI) and by the British Isles Lupus Assessment Group (BILAG) index. Results: At six months follow up, mean SLEDAI values decreased significantly from (mean (SD)) 12.1 (2.2) to 4.7 (1.1). Clinical improvement (50% reduction in SLEDAI) occurred in all but three patients. All but one patient responded according to BILAG. Remission defined as SLEDAI <3 was achieved in nine of 16 patients. Isotype analysis of anti-dsDNA antibodies revealed preferential decreases of IgG and IgA, but not IgM. Higher absolute numbers of CD19+ cells at baseline were correlated with shorter depletion time (r = −0.6). Conclusions: The majority of patients improved following rituximab plus cyclophosphamide. The differential downregulation of anti-DNA of the IgG and IgA but not the IgM isotypes supports the hypothesis that cells producing pathogenic autoantibodies are preferentially targeted by the treatment. The fact that greater absolute numbers of CD19+ cells at baseline predict a less impressive clinical and serological response suggests that more flexible dosing could be advantageous.


Arthritis Research & Therapy | 2006

Differential effects on BAFF and APRIL levels in rituximab-treated patients with systemic lupus erythematosus and rheumatoid arthritis

Therese Vallerskog; Mikael Heimbürger; Iva Gunnarsson; Wei Zhou; Marie Wahren-Herlenius; Christina Trollmo; Vivianne Malmström

The objective of this study was to investigate the interaction between levels of BAFF (B-cell activation factor of the tumour necrosis factor [TNF] family) and APRIL (a proliferation-inducing ligand) and B-cell frequencies in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) treated with the B-cell-depleting agent rituximab. Ten patients with SLE were treated with rituximab in combination with cyclophosphamide and corticosteroids. They were followed longitudinally up to 6 months after B-cell repopulation. Nine patients with RA, resistant or intolerant to anti-TNF therapy, treated with rituximab plus methotrexate were investigated up to 6 months after treatment. The B-cell frequency was determined by flow cytometry, and serum levels of BAFF and APRIL were measured by enzyme-linked immunosorbent assays. BAFF levels rose significantly during B-cell depletion in both patient groups, and in patients with SLE the BAFF levels declined close to pre-treatment levels upon B-cell repopulation. Patients with SLE had normal levels of APRIL at baseline, and during depletion there was a significant decrease. In contrast, patients with RA had APRIL levels 10-fold higher than normal, which did not change during depletion. At baseline, correlations between levels of B cells and APRIL, and DAS28 (disease activity score using 28 joint counts) and BAFF were observed in patients with RA. In summary, increased BAFF levels were observed during absence of circulating B cells in our SLE and RA patient cohorts. In spite of the limited number of patients, our data suggest that BAFF and APRIL are differentially regulated in different autoimmune diseases and, in addition, differently affected by rituximab treatment.


Arthritis Research & Therapy | 2009

Predictors of the first cardiovascular event in patients with systemic lupus erythematosus - a prospective cohort study

Johanna Gustafsson; Iva Gunnarsson; Ola Börjesson; Susanne Pettersson; Sonia Möller; Guo-Zhong Fei; Kerstin Elvin; Julia F. Simard; Lars-Olof Hansson; Ingrid E. Lundberg; Anders Larsson; Elisabet Svenungsson

IntroductionCardiovascular disease (CVD) is a major cause of premature mortality among Systemic lupus erythematosus (SLE) patients. Many studies have measured and evaluated risk factors for premature subclinical atherosclerosis, but few studies are prospective and few have evaluated risk factors for hard endpoints, i.e. clinically important cardiovascular events (CVE). We investigated the impact of traditional and lupus associated risk factors for the first ever CVE in a longitudinal cohort of SLE patients.MethodsA total of 182 SLE patients (mean age 43.9 years) selected to be free of CVE were included. Cardiovascular and autoimmune biomarkers were measured on samples collected after overnight fasting at baseline. Clinical information was collected at baseline and at follow up. End point was the first ever CVE (ischemic heart, cerebrovascular or peripheral vascular disease or death due to CVD). Impact of baseline characteristics/biomarkers on the risk of having a first CVE was evaluated with Cox regression.ResultsFollow up was 99.5% after a mean time of 8.3 years. Twenty-four patients (13%) had a first CVE. In age-adjusted Cox regression, any positive antiphospholipid antibody (aPL), elevated markers of endothelial activation (von Willebrand factor (vWf), soluble vascular cellular adhesion molecule-1 (sVCAM-1)) and fibrinogen predicted CVEs. Of SLE manifestations, arthritis, pleuritis and previous venous occlusion were positively associated with future CVEs while thrombocytopenia was negatively associated. Among traditional risk factors only age and smoking were significant predictors. In a multivariable Cox regression model age, any positive aPL, vWf and absence of thrombocytopenia were all predictors of the first CVE.ConclusionsIn addition to age, positive aPL, biomarkers indicating increased endothelial cell activity/damage, and absence of thrombocytopenia were independent predictors of CVEs in this prospective study. Our results indicate that activation of the endothelium and the coagulation system are important features in SLE related CVD. Furthermore, we observed that the risk of CVEs seems to differ between subgroups of SLE patients.

Collaboration


Dive into the Iva Gunnarsson's collaboration.

Top Co-Authors

Avatar

Elisabet Svenungsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanna Gustafsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agneta Zickert

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis Parodis

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge