Ivan Conte
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan Conte.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ivan Conte; Sabrina Carrella; Raffaella Avellino; Marianthi Karali; Raquel Marco-Ferreres; Paola Bovolenta; Sandro Banfi
MicroRNAs (miRNAs) are small noncoding RNAs that have important roles in the regulation of gene expression. The roles of individual miRNAs in controlling vertebrate eye development remain, however, largely unexplored. Here, we show that a single miRNA, miR-204, regulates multiple aspects of eye development in the medaka fish (Oryzias latipes). Morpholino-mediated ablation of miR-204 expression resulted in an eye phenotype characterized by microphthalmia, abnormal lens formation, and altered dorsoventral (D-V) patterning of the retina, which is associated with optic fissure coloboma. Using a variety of in vivo and in vitro approaches, we identified the transcription factor Meis2 as one of the main targets of miR-204 function. We show that, together with altered regulation of the Pax6 pathway, the abnormally elevated levels of Meis2 resulting from miR-204 inactivation are largely responsible for the observed phenotype. These data provide an example of how a specific miRNA can regulate multiple events in eye formation; at the same time, they uncover an as yet unreported function of Meis2 in the specification of D-V patterning of the retina.
PLOS Genetics | 2013
Ohad Shaham; Karen Gueta; Eyal Mor; Pazit Oren-Giladi; Dina Grinberg; Qing Xie; Ales Cvekl; Noam Shomron; Noa Davis; Maya Keydar-Prizant; Shaul Raviv; Metsada Pasmanik-Chor; Rachel E. Bell; Carmit Levy; Raffaella Avellino; Sandro Banfi; Ivan Conte; Ruth Ashery-Padan
During development, tissue-specific transcription factors regulate both protein-coding and non-coding genes to control differentiation. Recent studies have established a dual role for the transcription factor Pax6 as both an activator and repressor of gene expression in the eye, central nervous system, and pancreas. However, the molecular mechanism underlying the inhibitory activity of Pax6 is not fully understood. Here, we reveal that Trpm3 and the intronic microRNA gene miR-204 are co-regulated by Pax6 during eye development. miR-204 is probably the best known microRNA to function as a negative modulator of gene expression during eye development in vertebrates. Analysis of genes altered in mouse Pax6 mutants during lens development revealed significant over-representation of miR-204 targets among the genes up-regulated in the Pax6 mutant lens. A number of new targets of miR-204 were revealed, among them Sox11, a member of the SoxC family of pro-neuronal transcription factors, and an important regulator of eye development. Expression of Trpm/miR-204 and a few of its targets are also Pax6-dependent in medaka fish eyes. Collectively, this study identifies a novel evolutionarily conserved mechanism by which Pax6 controls the down-regulation of multiple genes through direct up-regulation of miR-204.
Developmental Dynamics | 2005
Ivan Conte; Julián Morcillo; Paola Bovolenta
Six3 and Six6 genes are two closely related members of the Six/sine oculis family of homeobox containing transcription factors. Their expression and function at early stages of embryonic development has been widely addressed in a variety of species. However, their mRNA distribution during late embryonic, postnatal, and adult brain barely has been analyzed. Here, we show that despite their initial overlap in the anterior neural plate, the expression of Six3 and Six6 progressively segregates to different regions during mammalian brain development, maintaining only few areas of partial overlap in the thalamic and hypothalamic regions. Six3, but not Six6, is additionally expressed in the olfactory bulb, cerebral cortex, hippocampus, midbrain, and cerebellum. These distinct patterns support the idea that Six3 and Six6 are differentially required during forebrain development. Developmental Dynamics 234:718–725, 2005.
European Journal of Human Genetics | 2003
Ivan Conte; Marta Lestingi; Anneke I. den Hollander; Giovanna Alfano; Carmela Ziviello; Mariarosaria Pugliese; Diego Circolo; Cristina Caccioppoli; Alfredo Ciccodicola; Sandro Banfi
Retinitis pigmentosa (RP) is the most common form of inherited retinopathy, with an approximate incidence of 1 in 3700 individuals worldwide. Mutations in the retinitis pigmentosa 1 (RP1) gene are responsible for about 5–10% cases of autosomal dominant RP. The RP1 gene is specifically expressed in the photoreceptor layers of the postnatal retina and encodes a predicted protein characterised by the presence of two doublecortin (DC) domains, known to be implicated in microtubule binding. We identified and characterised, both in human and in mouse, a novel mammalian gene, termed Retinitis Pigmentosa1-like1 (RP1L1), because of its significant sequence similarity to the RP1 gene product. The sequence homology between RP1 and RP1L1 was found to be mostly restricted to the DC domains and to the N-terminal region, including the first 350 amino acids. The RP1L1 gene was also found to be conserved in distant vertebrates, since we identified a homologue in Fugu rubripes (pufferfish). Similar to RP1, RP1L1 expression is restricted to the postnatal retina, as determined by semiquantitative reverse transcriptase-PCR and Northern analysis. The retina-specific expression and the sequence similarity to RP1 render RP1L1 a potential candidate for inherited retinal disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Ivan Conte; Kristen D. Hadfield; Sara Barbato; Sabrina Carrella; Mariateresa Pizzo; Rajeshwari S. Bhat; Annamaria Carissimo; Marianthi Karali; Louise F. Porter; Jill Urquhart; Sofie Hateley; James O’Sullivan; Forbes D.C. Manson; Stephan C. F. Neuhauss; Sandro Banfi; Graeme C.M. Black
Significance MicroRNAs are key players in the regulation of gene expression. An understanding of human conditions caused by microRNA mutations provides insight into mechanisms of gene regulation and into the interplay between development and maintenance in tissue homeostasis. The eye represents a notable target tissue of genetic diseases. Inherited retinal degenerations and developmental eye disorders are two separate groups that represent leading causes of blindness worldwide. Identifying underlying genetic causes of such conditions is important for diagnosis, counseling, and potential therapy development. We identified a dominant mutation in microRNA-204 as the genetic cause of a unique phenotype of retinal degeneration and coloboma and thus highlight the importance of microRNA-204 as a master regulator of ocular development and normal maintenance. Ocular developmental disorders, including the group classified as microphthalmia, anophthalmia, and coloboma (MAC) and inherited retinal dystrophies, collectively represent leading causes of hereditary blindness. Characterized by extreme genetic and clinical heterogeneity, the separate groups share many common genetic causes, in particular relating to pathways controlling retinal and retinal pigment epithelial maintenance. To understand these shared pathways and delineate the overlap between these groups, we investigated the genetic cause of an autosomal dominantly inherited condition of retinal dystrophy and bilateral coloboma, present in varying degrees in a large, five-generation family. By linkage analysis and exome sequencing, we identified a previously undescribed heterozygous mutation, n.37C > T, in the seed region of microRNA-204 (miR-204), which segregates with the disease in all affected individuals. We demonstrated that this mutation determines significant alterations of miR-204 targeting capabilities via in vitro assays, including transcriptome analysis. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family, including photoreceptor alterations with reduced numbers of both cones and rods as a result of increased apoptosis, thereby confirming the pathogenic effect of the n.37C > T mutation. Finally, knockdown assays in medaka fish demonstrated that miR-204 is necessary for normal photoreceptor function. Overall, these data highlight the importance of miR-204 in the regulation of ocular development and maintenance and provide the first evidence, to our knowledge, of its contribution to eye disease, likely through a gain-of-function mechanism.
Development | 2010
Ivan Conte; Raquel Marco-Ferreres; Leonardo Beccari; Elsa Cisneros; José María García Ruiz; Noemi Tabanera; Paola Bovolenta
Timely generation of distinct neural cell types in appropriate numbers is fundamental for the generation of a functional retina. In vertebrates, the transcription factor Six6 is initially expressed in multipotent retina progenitors and then becomes restricted to differentiated retinal ganglion and amacrine cells. How Six6 expression in the retina is controlled and what are its precise functions are still unclear. To address this issue, we used bioinformatic searches and transgenic approaches in medaka fish (Oryzias latipes) to characterise highly conserved regulatory enhancers responsible for Six6 expression. One of the enhancers drove gene expression in the differentiating and adult retina. A search for transcription factor binding sites, together with luciferase, ChIP assays and gain-of-function studies, indicated that NeuroD, a bHLH transcription factor, directly binds an ‘E-box’ sequence present in this enhancer and specifically regulates Six6 expression in the retina. NeuroD-induced Six6 overexpression in medaka embryos promoted unorganized retinal progenitor proliferation and, most notably, impaired photoreceptor differentiation, with no apparent changes in other retinal cell types. Conversely, Six6 gain- and loss-of-function changed NeuroD expression levels and altered the expression of the photoreceptor differentiation marker Rhodopsin. In addition, knockdown of Six6 interfered with amacrine cell generation. Together, these results indicate that Six6 and NeuroD control the expression of each other and their functions coordinate amacrine cell generation and photoreceptor terminal differentiation.
Genome Biology | 2007
Ivan Conte; Paola Bovolenta
BackgroundEmbryonic development is coordinated by sets of cis-regulatory elements that are collectively responsible for the precise spatio-temporal organization of regulatory gene networks. There is little information on how these elements, which are often associated with highly conserved noncoding sequences, are combined to generate precise gene expression patterns in vertebrates. To address this issue, we have focused on Six3, an important regulator of vertebrate forebrain development.ResultsUsing computational analysis and exploiting the diversity of teleost genomes, we identified a cluster of highly conserved noncoding sequences surrounding the Six3 gene. Transgenesis in medaka fish demonstrates that these sequences have enhancer, silencer, and silencer blocker activities that are differentially combined to control the entire distribution of Six3.ConclusionThis report provides the first example of the precise regulatory code necessary for the expression of a vertebrate gene, and offers a unique framework for defining the interplay of trans-acting factors that control the evolutionary conserved use of Six3.
Orphanet Journal of Rare Diseases | 2013
Ivana Peluso; Ivan Conte; Francesco Testa; Gopuraja Dharmalingam; Mariateresa Pizzo; Rob W.J. Collin; Nicola Meola; Sara Barbato; Margherita Mutarelli; Carmela Ziviello; Anna Maria Barbarulo; Vincenzo Nigro; Mariarosa Ab Melone; Francesca Simonelli; Sandro Banfi
BackgroundInherited retinal dystrophies, including Retinitis Pigmentosa and Leber Congenital Amaurosis among others, are a group of genetically heterogeneous disorders that lead to variable degrees of visual deficits. They can be caused by mutations in over 100 genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying a novel gene for an autosomal recessive form of early onset severe retinal dystrophy in a patient carrying no previously described mutations in known genes.MethodsAn integrated strategy including homozygosity mapping and whole exome sequencing was used to identify the responsible mutation. Functional tests were performed in the medaka fish (Oryzias latipes) model organism to gain further insight into the pathogenic role of the ADAMTS18 gene in eye and central nervous system (CNS) dysfunction.ResultsThis study identified, in the analyzed patient, a homozygous missense mutation in the ADAMTS18 gene, which was recently linked to Knobloch syndrome, a rare developmental disorder that affects the eye and the occipital skull. In vivo gene knockdown performed in medaka fish confirmed both that the mutation has a pathogenic role and that the inactivation of this gene has a deleterious effect on photoreceptor cell function.ConclusionThis study reveals that mutations in the ADAMTS18 gene can cause a broad phenotypic spectrum of eye disorders and contribute to shed further light on the complexity of retinal diseases.
Development | 2011
Giovanna Alfano; Ivan Conte; Tiziana Caramico; Raffaella Avellino; Benedetta Arnò; Maria Teresa Pizzo; Naoyuki Tanimoto; Susanne C. Beck; Gesine Huber; Pascal Dollé; Mathias W. Seeliger; Sandro Banfi
Vax2 is an eye-specific homeobox gene, the inactivation of which in mouse leads to alterations in the establishment of a proper dorsoventral eye axis during embryonic development. To dissect the molecular pathways in which Vax2 is involved, we performed a transcriptome analysis of Vax2–/– mice throughout the main stages of eye development. We found that some of the enzymes involved in retinoic acid (RA) metabolism in the eye show significant variations of their expression levels in mutant mice. In particular, we detected an expansion of the expression domains of the RA-catabolizing enzymes Cyp26a1 and Cyp26c1, and a downregulation of the RA-synthesizing enzyme Raldh3. These changes determine a significant expansion of the RA-free zone towards the ventral part of the eye. At postnatal stages of eye development, Vax2 inactivation led to alterations of the regional expression of the cone photoreceptor genes Opn1sw (S-Opsin) and Opn1mw (M-Opsin), which were significantly rescued after RA administration. We confirmed the above described alterations of gene expression in the Oryzias latipes (medaka fish) model system using both Vax2 gain- and loss-of-function assays. Finally, a detailed morphological and functional analysis of the adult retina in mutant mice revealed that Vax2 is necessary for intraretinal pathfinding of retinal ganglion cells in mammals. These data demonstrate for the first time that Vax2 is both necessary and sufficient for the control of intraretinal RA metabolism, which in turn contributes to the appropriate expression of cone opsins in the vertebrate eye.
American Journal of Human Genetics | 2013
James A. Poulter; Musallam Al-Araimi; Ivan Conte; Maria M. van Genderen; Eamonn Sheridan; Ian M. Carr; David A. Parry; Mike Shires; Sabrina Carrella; John Bradbury; Kamron Khan; Phillis Lakeman; Panagiotis I. Sergouniotis; Andrew R. Webster; Anthony T. Moore; Bishwanath Pal; Moin D. Mohamed; Anandula Venkataramana; Vedam Lakshmi Ramprasad; Rohit Shetty; Murugan Saktivel; Govindasamy Kumaramanickavel; Alex Tan; David A. Mackey; Alex W. Hewitt; Sandro Banfi; Manir Ali; Chris F. Inglehearn; Carmel Toomes
Foveal hypoplasia and optic nerve misrouting are developmental defects of the visual pathway and only co-occur in connection with albinism; to date, they have only been associated with defects in the melanin-biosynthesis pathway. Here, we report that these defects can occur independently of albinism in people with recessive mutations in the putative glutamine transporter gene SLC38A8. Nine different mutations were identified in seven Asian and European families. Using morpholino-mediated ablation of Slc38a8 in medaka fish, we confirmed that pigmentation is unaffected by loss of SLC38A8. Furthermore, by undertaking an association study with SNPs at the SLC38A8 locus, we showed that common variants within this gene modestly affect foveal thickness in the general population. This study reveals a melanin-independent component underpinning the development of the visual pathway that requires a functional role for SLC38A8.