Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan Maillard is active.

Publication


Featured researches published by Ivan Maillard.


Journal of Clinical Oncology | 2002

Promising Survival for Patients With Newly Diagnosed Glioblastoma Multiforme Treated With Concomitant Radiation Plus Temozolomide Followed by Adjuvant Temozolomide

Roger Stupp; P.-Y. Dietrich; Sandrine Ostermann Kraljevic; Alessia Pica; Ivan Maillard; Phillipe Maeder; Reto Meuli; Robert C. Janzer; Gianpaolo Pizzolato; Raymond Miralbell; François Porchet; Luca Regli; Nicolas de Tribolet; René O. Mirimanoff; Serge Leyvraz

PURPOSE Temozolomide is a novel oral alkylating agent with demonstrated efficacy as second-line therapy for patients with recurrent anaplastic astrocytoma and glioblastoma multiforme (GBM). This phase II study was performed to determine the safety, tolerability, and efficacy of concomitant radiation plus temozolomide therapy followed by adjuvant temozolomide therapy in patients with newly diagnosed GBM. PATIENTS AND METHODS Sixty-four patients were enrolled onto this open-label, phase II trial. Temozolomide (75 mg/m(2)/d x 7 d/wk for 6 weeks) was administered orally concomitant with fractionated radiotherapy (60 Gy total dose: 2 Gy x 5 d/wk for 6 weeks) followed by temozolomide monotherapy (200 mg/m(2)/d x 5 days, every 28 days for six cycles). The primary end points were safety and tolerability, and the secondary end point was overall survival. RESULTS Concomitant radiation plus temozolomide therapy was safe and well tolerated. Nonhematologic toxicities were rare and mild to moderate in severity. During the concomitant treatment phase, grade 3 or 4 neutropenia, thrombocytopenia, or both were observed in 6% of patients, including two severe infections with Pneumocystis carinii. During adjuvant temozolomide, 2% and 6% of cycles were associated with grade 3 and 4 neutropenia or thrombocytopenia, respectively. Median survival was 16 months, and the 1- and 2-year survival rates were 58% and 31%, respectively. Patients younger than 50 years old and patients who underwent debulking surgery had the best survival outcome. CONCLUSION Continuous daily temozolomide and concomitant radiation is safe. This regimen of concomitant chemoradiotherapy followed by adjuvant chemotherapy may prolong the survival of patients with glioblastoma. Further investigation is warranted, and a randomized trial is ongoing.


Nature Immunology | 2005

Notch signaling controls the generation and differentiation of early T lineage progenitors

Arivazhagan Sambandam; Ivan Maillard; Valerie P. Zediak; Lanwei Xu; Rachel M. Gerstein; Avinash Bhandoola

Signaling by the transmembrane receptor Notch is critical for T lineage development, but progenitor subsets that first receive Notch signals have not been defined. Here we identify an immature subset of early T lineage progenitors (ETPs) in the thymus that expressed the tyrosine kinase receptor Flt3 and had preserved B lineage potential at low progenitor frequency. Notch signaling was active in ETPs and was required for generation of the ETP population. Additionally, Notch signals contributed to the subsequent differentiation of ETPs. In contrast, multipotent hematopoietic progenitors circulated in the blood even in the absence of Notch signaling, suggesting that critical Notch signals during early T lineage development are delivered early after thymic entry.


Cancer Biology & Therapy | 2002

Notch Signaling in Cancer

Eric J. Allenspach; Ivan Maillard

Notch signaling plays a key role in the normal development of many tissues and cell types, through diverse effects on differentiation, survival, and/or proliferation that are highly dependent on signal strength and cellular context. Because perturbations in the regulation of differentiation, survival, and/or proliferation underlie malignant transformation, pathophysiologic Notch signals potentially contribute to cancer development in several different ways. Notch signaling was first linked to tumorigenesis through identification of a recurrent t(7;9)(q34;q34.3) chromosomal translocation involving the human Notch1 gene that is found in a small subset of human pre-T-cell acute lymphoblastic leukemias (T-ALL).1 Since this discovery, aberrant Notch signaling has been suggested to be involved in a wide variety of human neoplasms. In this review, we will focus on recent studies linking aberrant Notch signaling with cancer. First, we discuss various mechanisms through which Notch signaling may influence cellular transformation. Then, we critically review literature pertaining to the role of Notch signaling in several cancers, and discuss possible therapeutic targets in the Notch pathway. Key Words: Notch, Cancer, Transformation, Development, Oncogene, Tumor suppressor


Immunity | 1997

IL-4 Rapidly Produced by Vβ4 Vα8 CD4+ T Cells Instructs Th2 Development and Susceptibility to Leishmania major in BALB/c Mice

Pascal Launois; Ivan Maillard; Sabine Pingel; Kristin G. Swihart; Ioannis Xenarios; Hans Acha-Orbea; Heidi Diggelmann; Richard M. Locksley; H. Robson MacDonald; Jacques A. Louis

BALB/c mice develop aberrant T helper 2 (Th2) responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of interleukin-4 (IL-4) early after infection. Here we demonstrate that the burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hr after infection, occurs within CD4+ T cells that express V beta 4 V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient BALB/c mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and T helper 1 responses occurred following infection. Recombinant LACK antigen from L. major induced comparable IL-4 production in V beta 4 V alpha 8 CD4+ cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4 V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex organism.


Annals of Neurology | 2000

Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations.

Ichizo Nishino; Antonella Spinazzola; Alexandros Papadimitriou; Simon Hammans; Israel Steiner; Cecil D. Hahn; Anne M. Connolly; Alain Verloes; João Guimarães; Ivan Maillard; Hitoshi Hamano; M. Alice Donati; Carol E. Semrad; James A. Russell; Antonio L. Andreu; Giorgos M. Hadjigeorgiou; Tuan Vu; Saba Tadesse; Torbjoern G. Nygaard; Ikuya Nonaka; Ikuo Hirano; Eduardo Bonilla; Lewis P. Rowland; Salvatore DiMauro; Michio Hirano

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder defined clinically by severe gastrointestinal dysmotility; cachexia; ptosis, ophthalmoparesis, or both; peripheral neuropathy; leukoencephalopathy; and mitochondrial abnormalities. The disease is caused by mutations in the thymidine phosphorylase (TP) gene. TP protein catalyzes phosphorolysis of thymidine to thymine and deoxyribose 1‐phosphate. We identified 21 probands (35 patients) who fulfilled our clinical criteria for MNGIE. MNGIE has clinically homogeneous features but varies in age at onset and rate of progression. Gastrointestinal dysmotility is the most prominent manifestation, with recurrent diarrhea, borborygmi, and intestinal pseudo‐obstruction. Patients usually die in early adulthood (mean, 37.6 years; range, 26–58 years). Cerebral leukodystrophy is characteristic. Mitochondrial DNA (mtDNA) has depletion, multiple deletions, or both. We have identified 16 TP mutations. Homozygous or compound heterozygous mutations were present in all patients tested. Leukocyte TP activity was reduced drastically in all patients tested, 0.009 ± 0.021 μmol/hr/mg (mean ± SD; n = 16), compared with controls, 0.67 ± 0.21 μmol/hr/mg (n = 19). MNGIE is a recognizable clinical syndrome caused by mutations in thymidine phosphorylase. Severe reduction of TP activity in leukocytes is diagnostic. Altered mitochondrial nucleoside and nucleotide pools may impair mtDNA replication, repair, or both. Ann Neurol 2000;47:792–800


Cell Stem Cell | 2008

Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells.

Ivan Maillard; Ute Koch; Alexis Dumortier; Olga Shestova; Lanwei Xu; Hong Sai; Seth E. Pross; Avinash Bhandoola; Freddy Radtke

Gain-of-function experiments have demonstrated the potential of Notch signals to expand primitive hematopoietic progenitors, but whether Notch physiologically regulates hematopoietic stem cell (HSC) homeostasis in vivo is unclear. To answer this question, we evaluated the effect of global deficiencies of canonical Notch signaling in rigorous HSC assays. Hematopoietic progenitors expressing dominant-negative Mastermind-like1 (DNMAML), a potent inhibitor of Notch-mediated transcriptional activation, achieved stable long-term reconstitution of irradiated hosts and showed a normal frequency of progenitor fractions enriched for long-term HSCs. Similar results were observed with cells lacking CSL/RBPJ, a DNA-binding factor that is required for canonical Notch signaling. Notch-deprived progenitors provided normal long-term reconstitution after secondary competitive transplantation. Furthermore, Notch target genes were expressed at low levels in primitive hematopoietic progenitors. Taken together, these results rule out an essential physiological role for cell-autonomous canonical Notch signals in HSC maintenance.


Development | 2012

Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells

Kelli L. VanDussen; Alexis J. Carulli; Theresa M. Keeley; Sanjeevkumar R. Patel; Brent J. Puthoff; Scott T. Magness; Ivy T. Tran; Ivan Maillard; Christian W. Siebel; Åsa Kolterud; Ann S. Grosse; Deborah L. Gumucio; Stephen A. Ernst; Yu Hwai Tsai; Peter J. Dempsey; Linda C. Samuelson

Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis.


Journal of Experimental Medicine | 2005

Notch signaling is an important regulator of type 2 immunity

LiLi Tu; Terry C. Fang; David Artis; Olga Shestova; Seth E. Pross; Ivan Maillard

Notch ligands and receptors have been implicated in helper T cell (Th cell) differentiation. Whether Notch signals are involved in differentiation of T helper type 1 (Th1) cells, Th2 cells, or both, however, remains unresolved. To clarify the role of Notch in Th cell differentiation, we generated mice that conditionally inactivate Notch signaling in mature T cells. Mice that lack Notch signaling in CD4+ T cells fail to develop a protective Th2 cell response against the gastrointestinal helminth Trichuris muris. In contrast, they exhibit effective Th1 cell responses and are able to control Leishmania major infection. These data demonstrate that Notch signaling is a regulator of type 2 immunity.


Immunity | 2003

Notch and the Immune System

Ivan Maillard; Scott H. Adler

Notch proteins are used repeatedly to direct developmental cell fate decisions in multiple organs. During hematopoiesis and immune development, Notch is critical for T/B lineage specification and for generation of splenic marginal zone B cells. In early embryonic development, Notch is crucial for generating hematopoietic stem cells. Emerging data suggest that Notch may also modulate the differentiation and activity of peripheral T cells. Understanding the specific regulation of the Notch pathway in different contexts and its interaction with other signaling pathways remains an important challenge to comprehend the full spectrum of Notch effects. In this review, we critically assess recent findings regarding the function of Notch in the hematolymphoid system.


Journal of Experimental Medicine | 2006

The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor

Ivan Maillard; LiLi Tu; Arivazhagan Sambandam; Yumi Yashiro-Ohtani; John M. Millholland; Karen Keeshan; Olga Shestova; Lanwei Xu; Avinash Bhandoola

Genetic inactivation of Notch signaling in CD4−CD8− double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4+CD8+ double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein–tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRβ expression. DNMAML attenuated the pre-TCR–associated increase in cell size and CD27 expression. TCRβ or TCRαβ transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML− or DNMAML+ DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML+ DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the β-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J–MAML complex.

Collaboration


Dive into the Ivan Maillard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jooho Chung

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jonathan S. Serody

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Leo Luznik

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Avinash Bhandoola

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge