Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivana Strahinic is active.

Publication


Featured researches published by Ivana Strahinic.


Journal of Applied Microbiology | 2001

Characterization of cell envelope-associated proteinases of thermophilic lactobacilli

Djordje Fira; Milan Kojic; A. Banina; I. Spasojevic; Ivana Strahinic; Ljubisa Topisirovic

D. FIRA, M. KOJIC, A. BANINA, I. SPASOJEVIC, I. STRAHINIC AND L. TOPISIROVIC. 2001. The proteolytic activities of two natural isolates of thermophilic lactobacilli, Lactobacillus acidophilus BGRA43 and Lact. delbrueckii BGPF1, and Lact. acidophilus CH2 (Chr. Hansen’s strain) and Lact. acidophilus V74 (Visby’s strain), were compared. Results revealed that optimal pH for all four proteinases is 6·5, whereas temperature optimum varied among proteinases. Determination of caseinolytic activity done under optimal conditions for each strain revealed that the CH2 and V74 proteinases completely hydrolysed both αS1‐casein and β‐casein, showing very low activity towards κ‐casein. The BGPF1 proteinase completely hydrolysed only β‐casein. The BGRA43 proteinase completely hydrolysed all three casein fractions. The proteolytic activities of whole cells were inhibited by serine proteinase inhibitors, suggesting that all four strains produce serine proteinases. DNA–DNA hybridization and PCR analysis showed that BGPF1 contains the prtB‐like proteinase gene. Characterized thermophilic strains BGPF1 and BGRA43 were successfully used as starter cultures for production of yoghurt and acidophilus milk, respectively.


Journal of Food Protection | 2004

Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16.

Jelena Lozo; Maja Vukasinovic; Ivana Strahinic; Ljubisa Topisirovic

The strain Lactobacillus paracasei subsp. paracasei BGBUK2-16. which was isolated from traditionally homemade white-pickled cheese, produces bacteriocin 217 (Bac217; approximately 7 kDa). The onset of Bac217 biosynthesis was observed in the logarithmic phase of growth, and the production plateau was reached after 9 or 12 h of incubation at 37 and 30 degrees C, respectively, when culture entered the early stationary phase. Biochemical characterization showed that Bac217 retained antimicrobial activity within the range of pH 3 to 12 or after treatment at 100 degrees C for 15 min. Bac217 antimicrobial activity also remained unchanged after storage at 4 degrees C for 6 months or -20 degrees C for up to 12 months. However, Bac217 activity was completely lost after treatment with different proteolytic enzymes. BGBUK2-16 contains only one plasmid about 80 kb in size. Plasmid curing indicated that genes coding for Bac217 synthesis and immunity seem to be located on this plasmid. Bac217 exhibited antimicrobial activity against some pathogenic bacteria, such as Staphylococcus aureus and Bacillus cereus. Interestingly, Bac217 showed activity against Salmonella sp. and Pseudomonas aeruginosa ATCC27853. The inhibitory effect of BGBUK2-16 on the growth of S. aureus in mixed culture was observed. S. aureus treatment with Bac217 led to a considerable decrease (CFU/ml) within a short period of time. The mode of Bac217 action on S. aureus was identified as bactericidal. It should be noted that the strain BGBUK2-16 was shown to be resistant to bacteriocin nisin, which is otherwise widely used as a food additive for fermented dairy products.


Journal of Applied Microbiology | 2007

Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese

Katarina Veljovic; Amarela Terzic-Vidojevic; Maja Vukasinovic; Ivana Strahinic; Jelena Begovic; Jelena Lozo; Mihailo Ostojic; Ljubisa Topisirovic

Aims:  Isolation, characterization and identification of lactic acid bacteria (LAB) from artisanal Zlatar cheese during the ripening process and selection of strains with good technological characteristics.


Applied and Environmental Microbiology | 2012

Different Roles for Lactococcal Aggregation Factor and Mucin Binding Protein in Adhesion to Gastrointestinal Mucosa

Jovanka Lukić; Ivana Strahinic; Branko Jovcic; Brankica Filipic; Ljubisa Topisirovic; Milan Kojic; Jelena Begovic

ABSTRACT Adhesion of bacteria to mucosal surfaces and epithelial cells is one of the key features for the selection of probiotics. In this study, we assessed the adhesion property of Lactococcus lactis subsp. lactis BGKP1 based on its strong autoaggregation phenotype and the presence of the mucin binding protein (MbpL). Genes involved in aggregation (aggL) and possible interaction with mucin (mbpL), present on the same plasmid pKP1, were previously separately cloned in the plasmid pAZIL. In vivo and in vitro experiments revealed potentially different physiological roles of these two proteins in the process of adherence to the intestine during the passage of the strain through the gastrointestinal tract. We correlated the in vitro and in vivo aggregation of the BGKP1-20 carrying plasmid with aggL to binding to the colonic mucus through nonspecific hydrophobic interactions. The expression of AggL on the bacterial cell surface significantly increased the hydrophobicity of the strain. On the other hand, the presence of AggL in the strain reduced its ability to adhere to the ileum. Moreover, MbpL protein showed an affinity to bind gastric type mucin proteins such as MUC5AC. This protein did not contribute to the binding of the strain to the ileal or colonic part of the intestine. Different potential functions of lactococcal AggL and MbpL proteins in the process of adhesion to the gastrointestinal tract are proposed.


BMC Microbiology | 2011

Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1

Milan Kojic; Branko Jovcic; Ivana Strahinic; Jelena Begovic; Jelena Lozo; Katarina Veljovic; Ljubisa Topisirovic

BackgroundAggregation may play a main role in the adhesion of bacteria to the gastrointestinal epithelium and their colonization ability, as well as in probiotic effects through co-aggregation with intestinal pathogens and their subsequent removal. The aggregation phenomenon in lactococci is directly associated with the sex factor and lactose plasmid co-integration event or duplication of the cell wall spanning (CWS) domain of PrtP proteinase.ResultsLactococcus lactis subsp. lactis BGKP1 was isolated from artisanal semi-hard homemade cheese and selected due to its strong auto-aggregation phenotype. Subsequently, non-aggregating derivative (Agg-) of BGKP1, designated as BGKP1-20, was isolated, too. Comparative analysis of cell surface proteins of BGKP1 and derivative BGKP1-20 revealed a protein of approximately 200 kDa only in the parental strain BGKP1. The gene involved in aggregation (aggL) was mapped on plasmid pKP1 (16.2 kb), cloned and expressed in homologous and heterologous lactococci and enterococci. This novel lactococcal aggregation protein was shown to be sufficient for cell aggregation in all tested hosts. In addition to the aggL gene, six more ORFs involved in replication (repB and repX), restriction and modification (hsdS), transposition (tnp) and possible interaction with mucin (mbpL) were also located on plasmid pKP1.ConclusionAggL is a new protein belonging to the collagen-binding superfamily of proteins and is sufficient for cell aggregation in lactococci.


Applied and Environmental Microbiology | 2013

Interaction of Lactobacillus fermentum BGHI14 with Rat Colonic Mucosa: Implications for Colitis Induction

Jovanka Lukić; Ivana Strahinic; Marina Milenković; Natasa Golic; Milan Kojic; Ljubisa Topisirovic; Jelena Begovic

ABSTRACT The present study was carried out to test the colonic mucosal response of rats to oral supplementation with Lactobacillus fermentum BGHI14 and to correlate the tissue reaction to trinitrobenzenesulfonate (TNBS)-induced colitis with mucosal barrier alterations caused by bacterial ingestion. An immune cell-mediated reaction of healthy colonic tissue was noticed after bacterial feeding. After prolonged bacterial treatment, the observed reaction had retreated to normality, but the mRNA levels of proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) remained elevated. These data point to the chronic low-grade inflammation that could be caused by long-term probiotic consumption. Although no detrimental effects of bacterial pretreatment were noticed in colitic rats, at least in the acute state of disease, the results obtained in our study point to the necessity of reassessment of existing data on the safety of probiotic preparations. Additionally, probiotic effects in experimental colitis models might depend on time coordination of disease induction with treatment duration.


Letters in Applied Microbiology | 2010

The presence of prtP proteinase gene in natural isolate Lactobacillus plantarum BGSJ3–18

Ivana Strahinic; Milan Kojic; Maja Tolinacki; Djordje Fira; Ljubisa Topisirovic

Aims:  The study of proteolytic activity and examination of proteinase gene region organization in proteolytically active Lactobacillus plantarum strains from different natural sources.


Frontiers in Microbiology | 2013

Technological and probiotic potential of BGRA43 a natural isolate of Lactobacillus helveticus

Ivana Strahinic; Jelena Lozo; Amarela Terzic-Vidojevic; Djordje Fira; Milan Kojic; Natasa Golic; Jelena Begovic; Ljubisa Topisirovic

Lactobacillus helveticus BGRA43 is a human intestinal isolate showing antimicrobial activity, amongst others, against Yersinia enterocolitica, Shigella sonnei, Shigella flexneri, and Streptococcus pneumoniae. BGRA43 produces PrtH proteinase with proteolytic activity on both casein and β-lactoglobulin (BLG). BGRA43 is able to reduce the allergenicity of BLG. Bioactive peptides released in BGRA43 fermented milk are potent modulators of innate immunity by modulating the production of proinflammatory cytokines IL-6 and TNF-α. BGRA43 is able to survive in simulated gastric and intestinal conditions. The growth of BGRA43 in milk results in a fast acidification lowering the milk pH to 4.53 generating mild, homogeneous, and viscous yogurt-like product. The strain BGRA43 grows suitably in pure cow or goat’s milk as well as in milk containing inulin or nutrim even when they are used as the sole carbon source. It is suggested that strain BGRA43 could be used as a single-strain culture for the preparation of yogurt-like products from bovine or caprine milk. Overall, L. helveticus BGRA43 could be considered as a potential probiotic candidate with appropriate technological properties attractive for the dairy industry.


International Journal of Food Microbiology | 2010

Construction of a new shuttle vector and its use for cloning and expression of two plasmid-encoded bacteriocins from Lactobacillus paracasei subsp. paracasei BGSJ2-8.

Milan Kojic; Jelena Lozo; Branko Jovcic; Ivana Strahinic; Djordje Fira; Ljubisa Topisirovic

A new shuttle-cloning vector, pA13, was constructed and successfully introduced into Escherichia coli, Lactobacillus and Lactococcus strains. It showed high segregational and structural stability in all three hosts. The natural plasmid pSJ2-8 from L. paracasei subsp. paracasei BGSJ2-8 was cloned into pA13 using BamHI to obtain the construct, pB5. Sequencing and in silico analysis of pB5 revealed fifteen open reading frames (ORF). Plasmid pSJ2-8 harbours genes encoding the production of two bacteriocins, BacSJ and acidocin 8912. Combined N-terminal amino acid sequencing of BacSJ in combination with DNA sequencing of the bacSJ2-8 gene enabled determination of the primary structure of bacteriocin BacSJ. The bacSJ2-8 gene encodes 68-amino-acid peptide with a double-glycine leader peptide consisting of 18 amino acids, followed by the orf2 (bacSJ2-8i) which encodes the immunity protein of BacSJ. The production and functional expression of BacSJ in homologous and heterologous hosts suggest that bacSJ2-8 and bacSJ2-8i together with the genes encoding the ABC transporter and accessory protein are the minimal requirements for production of BacSJ. Biochemical and genetic analyses showed that BacSJ belongs to class II bacteriocins.


PLOS ONE | 2015

AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp. paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro

Marija Miljkovic; Ivana Strahinic; Maja Tolinacki; Milica Zivkovic; Snezana Kojic; Natasa Golic; Milan Kojic

Eleven Lactobacillus strains with strong aggregation abilities were selected from a laboratory collection. In two of the strains, genes associated with aggregation capability were plasmid located and found to strongly correlate with collagen binding. The gene encoding the auto-aggregation-promoting protein (AggLb) of Lactobacillus paracasei subsp. paracasei BGNJ1-64 was cloned using a novel, wide-range-host shuttle cloning vector, pAZILSJ. The clone pALb35, containing a 11377-bp DNA fragment, was selected from the SacI plasmid library for its ability to provide carriers with the aggregation phenotype. The complete fragment was sequenced and four potential ORFs were detected, including the aggLb gene and three surrounding transposase genes. AggLb is the largest known cell-surface protein in lactobacilli, consisting of 2998 aa (318,611 Da). AggLb belongs to the collagen-binding superfamily and its C-terminal region contains 20 successive repeats that are identical even at the nucleotide level. Deletion of aggLb causes a loss of the capacity to form cell aggregates, whereas overexpression increases cellular aggregation, hydrophobicity and collagen-binding potential. PCR screening performed with three sets of primers based on the aggLb gene of BGNJ1-64 enabled detection of the same type of aggLb gene in five of eleven selected aggregation-positive Lactobacillus strains. Heterologous expression of aggLb confirmed the crucial role of the AggLb protein in cell aggregation and specific collagen binding, indicating that AggLb has a useful probiotic function in effective colonization of host tissue and prevention of pathogen colonization.

Collaboration


Dive into the Ivana Strahinic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milan Kojic

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelena Lozo

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge