Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milan Kojic is active.

Publication


Featured researches published by Milan Kojic.


Antimicrobial Agents and Chemotherapy | 2011

Emergence of NDM-1 Metallo-β-Lactamase in Pseudomonas aeruginosa Clinical Isolates from Serbia

Branko Jovcic; Zorica Lepsanovic; Vesna Suljagic; Gorjana Rackov; Jelena Begovic; Ljubisa Topisirovic; Milan Kojic

ABSTRACT This work reports, for the first time, the presence of New Delhi metallo-β-lactamase 1 (NDM-1) in Pseudomonas aeruginosa. Moreover, this is the first report of the NDM-1 presence in the Balkan region. Cosmid gene libraries of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical isolates MMA83 and MMA533 were screened for the presence of metallo-β-lactamases. Accordingly, both MMA83 and MMA533 carried the blaNDM-1 gene. Pulsed-field gel electrophoresis (PFGE) analysis indicated that strains MMA83 and MMA533 belonged to different clonal groups. Five additional isolates from different patients clonally related to either MMA83 or MMA533 were found to be NDM-1 positive.


Journal of Biological Chemistry | 2003

Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins

Olivera Gajic; Girbe Buist; Milan Kojic; Ljubisa Topisirovic; Oscar P. Kuipers; Jan Kok

A natural isolate of Lactococcus lactis was shown to produce two narrow spectrum class II bacteriocins, designated LsbA and LsbB. The cognate genes are located on a 5.6-kb plasmid within a gene cluster specifying LmrB, an ATP-binding cassette-type multidrug resistance transporter protein. LsbA is a hydrophobic peptide that is initially synthesized with an N-terminal extension. The housekeeping surface proteinase HtrA was shown to be responsible for the cleavage of precursor peptide to yield the active bacteriocin. LsbB is a relatively hydrophilic protein synthesized without an N-terminal leader sequence or signal peptide. The secretion of both polypeptides was shown to be mediated by LmrB. An L. lactis strain lacking plasmid-encoded LmrB and the chromosomally encoded LmrA is unable to secrete either of the two bacteriocins. Complementation of the strain with an active LmrB protein resulted in restored export of the two polypeptides across the cytoplasmic membrane. When expressed in an L. lactis strain that is sensitive to LsbA and LsbB, LmrB was shown to confer resistance toward both bacteriocins. It does so, most likely, by removing the two polypeptides from the cytoplasmic membrane. This is the first report in which a multidrug transporter protein is shown to be involved in both secretion and immunity of antimicrobial peptides.


Journal of Bacteriology | 2001

Regulation of rpoS Gene Expression in Pseudomonas: Involvement of a TetR Family Regulator

Milan Kojic; Vittorio Venturi

The rpoS gene encodes the sigma factor which was identified in several gram-negative bacteria as a central regulator during stationary phase. rpoS gene regulation is known to respond to cell density, showing higher expression in stationary phase. For Pseudomonas aeruginosa, it has been demonstrated that the cell-density-dependent regulation response known as quorum sensing interacts with this regulatory response. Using the rpoS promoter of P. putida, we identified a genomic Tn5 insertion mutant of P. putida which showed a 90% decrease in rpoS promoter activity, resulting in less RpoS being present in a cell at stationary phase. Molecular analysis revealed that this mutant carried a Tn5 insertion in a gene, designated psrA (Pseudomonas sigma regulator), which codes for a protein (PsrA) of 26.3 kDa. PsrA contains a helix-turn-helix motif typical of DNA binding proteins and belongs to the TetR family of bacterial regulators. The homolog of the psrA gene was identified in P. aeruginosa; the protein showed 90% identity to PsrA of P. putida. A psrA::Tn5 insertion mutant of P. aeruginosa was constructed. In both Pseudomonas species, psrA was genetically linked to the SOS lexA repressor gene. Similar to what was observed for P. putida, a psrA null mutant of P. aeruginosa also showed a 90% reduction in rpoS promoter activity; both mutants could be complemented for rpoS promoter activity when the psrA gene was provided in trans. psrA mutants of both Pseudomonas species lost the ability to induce rpoS expression at stationary phase, but they retained the ability to produce quorum-sensing autoinducer molecules. PsrA was demonstrated to negatively regulate psrA gene expression in Pseudomonas and in Escherichia coli as well as to be capable of activating the rpoS promoter in E. coli. Our data suggest that PsrA is an important regulatory protein of Pseudomonas spp. involved in the regulatory cascade controlling rpoS gene regulation in response to cell density.


Journal of Applied Microbiology | 2001

Characterization of cell envelope-associated proteinases of thermophilic lactobacilli

Djordje Fira; Milan Kojic; A. Banina; I. Spasojevic; Ivana Strahinic; Ljubisa Topisirovic

D. FIRA, M. KOJIC, A. BANINA, I. SPASOJEVIC, I. STRAHINIC AND L. TOPISIROVIC. 2001. The proteolytic activities of two natural isolates of thermophilic lactobacilli, Lactobacillus acidophilus BGRA43 and Lact. delbrueckii BGPF1, and Lact. acidophilus CH2 (Chr. Hansen’s strain) and Lact. acidophilus V74 (Visby’s strain), were compared. Results revealed that optimal pH for all four proteinases is 6·5, whereas temperature optimum varied among proteinases. Determination of caseinolytic activity done under optimal conditions for each strain revealed that the CH2 and V74 proteinases completely hydrolysed both αS1‐casein and β‐casein, showing very low activity towards κ‐casein. The BGPF1 proteinase completely hydrolysed only β‐casein. The BGRA43 proteinase completely hydrolysed all three casein fractions. The proteolytic activities of whole cells were inhibited by serine proteinase inhibitors, suggesting that all four strains produce serine proteinases. DNA–DNA hybridization and PCR analysis showed that BGPF1 contains the prtB‐like proteinase gene. Characterized thermophilic strains BGPF1 and BGRA43 were successfully used as starter cultures for production of yoghurt and acidophilus milk, respectively.


Microbiology | 2000

The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity.

Giuliano Degrassi; Milan Kojic; Goran Ljubijankić; Vittorio Venturi

The Bacillus pumilus gene encoding acetyl xylan esterase (axe) was identified and characterized. The axe gene was expressed and the recombinant enzyme produced in Escherichia coli was purified and characterized. The recombinant enzyme displayed similar properties to the acetyl xylan esterase (AXE) purified from B. pumilus. The AXE primary structure was 76% identical to the cephalosporin C deacetylase of B. subtilis, and 40% to two recently identified AXEs from Thermoanaerobacterium and Thermotoga maritima. These four proteins are of similar size and represent a new family of esterases having a broad substrate specificity. The recombinant AXE was demonstrated to have activity on several acetylated substrates, including on cephalosporin C.


Journal of Bacteriology | 2002

TetR Family Member PsrA Directly Binds the Pseudomonas rpoS and psrA Promoters

Milan Kojic; Claudio Aguilar; Vittorio Venturi

We have previously described a Pseudomonas gene, psrA, which enhances transcription of the rpoS sigma factor gene at stationary phase. We present molecular data which demonstrate that in Pseudomonas putida PsrA binds specifically to the rpoS and psrA promoters in DNA regions having similar palindromic sequences, C/GAAAC N(2-4) GTTTG/C, where N is any nucleotide. The position of the initiation of transcription was determined for both promoters, and PsrA binds from positions -59 to -35 in the rpoS promoter and from -18 to +20 in the psrA promoter with respect to the +1 transcription site. Expression studies with a psrA-lacZ transcriptional fusion in wild-type and psrA::Tn5 knockout mutants revealed that psrA was under additional control in response to growth phase. A model for the role of PsrA in the regulation of rpoS and psrA is presented.


Applied and Environmental Microbiology | 2003

Identification and Genetic Characterization of a Novel Proteinase, PrtR, from the Human Isolate Lactobacillus rhamnosus BGT10

Irena Pastar; Ivana Tonic; Natasa Golic; Milan Kojic; Richard van Kranenburg; Michiel Kleerebezem; Ljubisa Topisirovic; Goran S. Jovanovic

ABSTRACT A novel proteinase, PrtR, produced by the human vaginal isolate Lactobacillus rhamnosus strain BGT10 was identified and genetically characterized. The prtR gene and flanking regions were cloned and sequenced. The deduced amino acid sequence of PrtR shares characteristics that are common for other cell envelope proteinases (CEPs) characterized to date, but in contrast to the other cell surface subtilisin-like serine proteinases, it has a smaller and somewhat different B domain and lacks the helix domain, and the anchor domain has a rare sorting signal sequence. Furthermore, PrtR lacks the insert domain, which otherwise is situated inside the catalytic serine protease domain of all CEPs, and has a different cell wall spacer (W) domain similar to that of the cell surface antigen I and II polypeptides expressed by oral and vaginal streptococci. Moreover, the PrtR W domain exhibits significant sequence homology to the consensus sequence that has been shown to be the hallmark of human intestinal mucin protein. According to its αS1- and β-casein cleavage efficacy, PrtR is an efficient proteinase at pH 6.5 and is distributed throughout all L. rhamnosus strains tested. Proteinase extracts of the BGT10 strain obtained with Ca2+-free buffer at pH 6.5 were proteolytically active. The prtR promoter-like sequence was determined, and the minimal promoter region was defined by use of prtR-gusA operon fusions. The prtR expression is Casitone dependent, emphasizing that nitrogen depletion elevates its transcription. This is in correlation with the catalytic activity of the PrtR proteinase.


Journal of Bacteriology | 2003

Identification of Quorum-Sensing-Regulated Genes of Burkholderia cepacia

Claudio Aguilar; Arianna Friscina; Giulia Devescovi; Milan Kojic; Vittorio Venturi

Quorum sensing is a regulatory mechanism (operating in response to cell density) which in gram-negative bacteria usually involves the production of N-acyl homoserine lactones (HSL). Quorum sensing in Burkholderia cepacia has been associated with the regulation of expression of extracellular proteins and siderophores and also with the regulation of swarming and biofilm formation. In the present study, several quorum-sensing-controlled gene promoters of B. cepacia ATCC 25416 were identified and characterized. A total of 28 putative gene promoters show CepR-C(8)-HSL-dependent expression, suggesting that quorum sensing in B. cepacia is a global regulatory system.


Archives of Microbiology | 2003

Role of GacA, LasI, RhlI, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS/RpoS in Pseudomonas.

Iris Bertani; Milica Ševo; Milan Kojic; Vittorio Venturi

AbstractRpoS is the stationary phase sigma factor responsible for increased transcription of a set of genes when bacterial cells enter stationary phase and under stress conditions. In Escherichia coli, RpoS expression is modulated at the level of transcription, translation, and post-translational stability whereas in Pseudomonas, previous studies have implicated four genetic loci (psrA, gacA, lasI and rhlI) involved in rpoS transcription. In this report, the transcription, translation and proteins profiles of rpoS/RpoS were analyzed in response to growth phase of knockout genomic mutants in the P. aeruginosa transcriptional regulatory loci psrA, gacA, vfr, and in the las and rhl quorum-sensing systems. Gene expression and protein profiles were also analyzed in the ppk genomic mutant. This gene is responsible for the biosynthesis of polyphosphate, an alarmone involved in the regulation of RpoS accumulation in E. coli. Finally, the role of the ClpXP protease in RpoS regulation was also studied; in E. coli, this protease has been shown to rapidly degrade RpoS during exponential growth. These studies confirm the significant role of PsrA in rpoS transcription during the late-exponential and stationary growth phases, the probable role of Vfr in transcriptional repression during exponential phase, and the function of the ClpXP protease in RpoS degradation during exponential phase. GacA/GacS, the quorum-sensing systems, and the polyphosphate alarmone molecule were not significant in rpoS/RpoS regulation. These results demonstrate important similarities and differences with the regulation of this sigma factor in E. coli and in Pseudomonas.


Plant Cell Tissue and Organ Culture | 1997

Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species

Ivana Momčilović; Dragoljub Grubišić; Milan Kojic; Mirjana Nešković

Shoots of micropropagated Gentiana acaulis, G. cruciata, G. lutea, and G. purpurea were inoculated with suspensions of Agrobacterium rhizogenes cells, strains ATCC 15834 or A4M70GUS. Adventitious roots appeared at the sites of inoculation in all 4 species. Root tips were excised and cultured on growth regulator-free media for 2-6 years. They exhibited very high branching and plagiotropism. Spontaneous bud initiation occurred in roots of G. cruciata. Roots of G. lutea, G. acaulis and G. purpurea were cultured on media with high kinetin concentration, which induced the formation of friable callus tissues. Only in G. purpurea were these calluses organogenic. Regenerated shoots of G. cruciata and G. purpurea gave rise to plants, that displayed the typical phenotypes of A. rhizogenes-transformed plants: short internodes and rolled leaves. In the roots of G. acaulis and G. cruciata, transformed with A. rhizogenes A4M70GUS, a positive reaction with X-gluc indicated the activity of β-glucuronidase. The DNA extracted from hairy roots and from the roots of transgenic plants hybridized with the appropriate genomic probes in Southern blotting. This is taken as evidence of the stable genetic transformation in the 4 Gentiana species.

Collaboration


Dive into the Milan Kojic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelena Lozo

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vittorio Venturi

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge