Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivanita Stefanon is active.

Publication


Featured researches published by Ivanita Stefanon.


BioMed Research International | 2012

Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

Bruna Fernandes Azevedo; Lorena Barros Furieri; Franck Maciel Peçanha; Giulia Alessandra Wiggers; Paula Frizera Vassallo; Maylla Ronacher Simões; Jonaina Fiorim; Priscila Rossi de Batista; Mirian Fioresi; Luciana V. Rossoni; Ivanita Stefanon; María J. Alonso; Mercedes Salaices; Dalton Valentim Vassallo

Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced.


Hypertension | 2007

Mineralocorticoid Receptor Blockade Improves Vasomotor Dysfunction and Vascular Oxidative Stress Early After Myocardial Infarction

Carmem Luíza Sartório; Daniela Fraccarollo; Paolo Galuppo; Meike Leutke; Georg Ertl; Ivanita Stefanon; Johann Bauersachs

Mineralocorticoid receptor blockade improves mortality early after myocardial infarction (MI). This study investigated the vascular effects of mineralocorticoid receptor blockade in the early phase postinfarction in rats. Starting immediately after coronary ligation, male Wistar rats were treated with placebo or eplerenone (100 mg/kg/d). After 7 days, hemodynamic assessment was performed and endothelial function was determined. Maximum acetylcholine-induced relaxation was significantly attenuated in aortic rings from rats with heart failure after MI, and ameliorated by eplerenone treatment. Endothelium-independent relaxation by DEA-NONOate was similar among the groups. Endothelial NO synthase phosphorylation was reduced in the aorta of MI rats and restored by eplerenone therapy. Angiotensin I–induced vasoconstriction as well as angiotensin-converting enzyme protein levels were enhanced in aortas from MI placebo rats, and reduced by mineralocorticoid receptor inhibition. Aortic reactive oxygen species formation as well as the expression of the NAD(P)H oxidase subunit p22phox were increased after MI and normalized in eplerenone treated rats. In conclusion, mineralocorticoid receptor antagonism improved endothelial dysfunction in the early phase post-MI. Underlying mechanisms involve inhibition of vascular angiotensin-converting enzyme upregulation and improvement of endothelial NO synthase–derived NO bioavailability.


Brazilian Journal of Medical and Biological Research | 2011

Remodeling in the ischemic heart: the stepwise progression for heart

José Geraldo Mill; Ivanita Stefanon; L. dos Santos; Marcelo Perim Baldo

Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI) has decreased in the last decades. However, the incidence of heart failure (HF) in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals.


PLOS ONE | 2013

Left and Right Ventricle Late Remodeling Following Myocardial Infarction in Rats

Ivanita Stefanon; María Valero-Muñoz; Aurélia Araújo Fernandes; Rogério Faustino Ribeiro; Cristina Rodríguez; María Miana; José Martínez-González; Jessica S. Spalenza; Vicente Lahera; Paula Frizera Vassallo; Victoria Cachofeiro

Background The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). Methods MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Results Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. Conclusions INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals.


PLOS ONE | 2013

Chronic Cadmium Treatment Promotes Oxidative Stress and Endothelial Damage in Isolated Rat Aorta

Camila Cruz Pereira Almenara; Gilson Brás Broseghini-Filho; Marcus V. A. Vescovi; Jhuli Keli Angeli; Thaís de Oliveira Faria; Ivanita Stefanon; Dalton Valentim Vassallo; Alessandra Simão Padilha

Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L−1 cadmium chloride (CdCl2) in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD) or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the development of atherosclerosis.


PLOS ONE | 2011

Low-level lead exposure increases systolic arterial pressure and endothelium-derived vasodilator factors in rat aortas

Jonaina Fiorim; Rogério Faustino Ribeiro Junior; Edna Aparecida Silveira; Alessandra Simão Padilha; Marcos Vinícius A. Vescovi; Honério Coutinho de Jesus; Ivanita Stefanon; Mercedes Salaices; Dalton Valentim Vassallo

Chronic lead exposure induces hypertension and alters endothelial function. However, treatment with low lead concentrations was not yet explored. We analyzed the effects of 7 day exposure to low lead concentrations on endothelium-dependent responses. Wistar rats were treated with lead (1st dose 4 µg/100 g, subsequent dose 0.05 µg/100 g, i.m. to cover daily loss) or vehicle; blood levels attained at the end of treatment were 9.98 µg/dL. Lead treatment had the following effects: increase in systolic blood pressure (SBP); reduction of contractile response to phenylephrine (1 nM–100 µM) of aortic rings; unaffected relaxation induced by acetylcholine (0.1 nM–300 µM) or sodium nitroprusside (0.01 nM–0.3 µM). Endothelium removal, N G-nitro-L-arginine methyl ester (100 µM) and tetraethylammonium (2 mM) increased the response to phenylephrine in treated rats more than in untreated rats. Aminoguanidine (50 µM) increased but losartan (10 µM) and enalapril (10 µM) reduced the response to phenylephrine in treated rats. Lead treatment also increased aortic Na+/K+-ATPase functional activity, plasma angiotensin-converting enzyme (ACE) activity, protein expression of the Na+/K+-ATPase alpha-1 subunit, phosphorylated endothelial nitric oxide synthase (p-eNOS), and inducible nitric oxide synthase (iNOS). Our results suggest that on initial stages of lead exposure, increased SBP is caused by the increase in plasma ACE activity. This effect is accompanied by increased p-eNOS, iNOS protein expression and Na+/K+-ATPase functional activity. These factors might be a compensatory mechanism to the increase in SBP.


Brazilian Journal of Medical and Biological Research | 2005

Eucalyptol, an essential oil, reduces contractile activity in rat cardiac muscle

C.E.N. Damiani; Cleci Menezes Moreira; Ivanita Stefanon; Dalton Valentim Vassallo

Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.


Clinical and Experimental Hypertension | 2000

CYCLOOXYGENASE INHIBITION REDUCES BLOOD PRESSURE ELEVATION AND VASCULAR REACTIVITY DYSFUNCTION CAUSED BY INHIBITION OF NITRIC OXIDE SYNTHASE IN RATS

Valdeci da Cunha; Luciana V. Rossoni; P. P. A. Oliveira; Silmara Poton; Silvio Cesar Pretti; Dalton Valentim Vassallo; Ivanita Stefanon

In the present study we investigated the role of cyclooxygenase (COX)-dependent vasoconstrictors in the hypertension and altered vascular reactivity following prolonged nitric oxide (NO) synthase inhibition. Male Wistar rats (250–270g) were divided into four groups and treated for 7 days with Placebo (control), L-NAME (48 mg/kg/day), indomethacin (4 mg/kg/day) and L-NAME in combination with indomethacin. L-NAME treatment induced arterial hypertension, in vitro aortic hyperresponsiveness to phenylephrine, impaired vasodilatory response to acetylcholine and no significant change in response to sodium nitroprusside. Indomethacin co-treatment partially prevented blood pressure elevation, restored responsiveness to phenylephrine and improved sensitivity to acetylcholine. Indomethacin treatment alone did not modify blood pressure and aortic vascular reactivity. Both enhanced phenylphrine-induced contraction and impaired acetylcholine-evoked vasodilation induced by acute NO synthase inhibition with L-NAME (10−4M) in normal rat aortas were not modified by indomethacin (10−5M). These results are consistent with the hypothesis that constricting factors, which arise from the COX pathway, contribute to hypertension and altered vascular reactivity following continued inhibition of NO synthase.


Free Radical Biology and Medicine | 2014

Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas

Edna Aparecida Silveira; Fabiana Dayse Magalhães Siman; Thaís de Oliveira Faria; Marcos Vinícius A. Vescovi; Lorena Barros Furieri; Juliana Hott de Fúcio Lizardo; Ivanita Stefanon; Alessandra Simão Padilha; Dalton Valentim Vassallo

Chronic lead exposure induces hypertension affecting endothelial function. We investigated whether low-concentration lead exposure alters blood pressure and vascular reactivity, focusing on the roles of NO, oxidative stress, cyclooxygenase-derived vasoconstrictor prostanoids, and the local angiotensin-renin system. Aortic rings from 3-month-old Wistar rats were treated daily with lead acetate (first dose 4mg/100g, subsequent doses 0.05mg/100g, im) or vehicle for 30 days. Treatment increased lead blood levels (12μg/dl), blood pressure, and aortic ring contractile response to phenylephrine (1nM-100mM). Contractile response after L-NAME administration increased in both groups but was higher after lead treatment. Lead effects on Rmax decreased more after apocynin and superoxide dismutase administration compared to control. Indomethacin reduced phenylephrine response more after lead treatment than in controls. The selective COX-2 inhibitor NS398, thromboxane A2/prostaglandin H2 receptor antagonist SQ 29,548, TXA2 synthase inhibitor furegrelate, EP1 receptor antagonist SC 19220, and ACE inhibitor and AT1 receptor antagonist losartan reduced phenylephrine responses only in vessels from lead-treated rats. Basal and stimulated NO release was reduced and local O2(-) liberation increased in the lead-treated group compared to controls. eNOS, iNOS, and AT1 receptor protein expression increased with lead exposure, but COX-2 protein expression decreased. This is the first demonstration that blood Pb(2+) (12µg/dl) concentrations below the WHO-established values increased systolic blood pressure and vascular phenylephrine reactivity. This effect was associated with reduced NO bioavailability, increased reactive oxygen species production, increased participation of COX-derived contractile prostanoids, and increased renin-angiotensin system activity.


PLOS ONE | 2012

Low Mercury Concentration Produces Vasoconstriction, Decreases Nitric Oxide Bioavailability and Increases Oxidative Stress in Rat Conductance Artery

Núbia Belem Lemos; Jhuli Keli Angeli; Thaís de Oliveira Faria; Rogério Faustino Ribeiro Junior; Dalton Valentim Vassallo; Alessandra Simão Padilha; Ivanita Stefanon

Mercury is an environmental pollutant that reduces nitric oxide (NO) bioavailability and increases oxidative stress, having a close link with cardiovascular diseases, as carotid atherosclerosis, myocardial infarction, coronary heart disease and hypertension. One of the main sites affected by oxidative stress, which develops atherosclerosis, is the aorta. Under acute exposure to low mercury concentrations reactive oxygen species (ROS) production were only reported for resistance vessels but if low concentrations of mercury also affect conductance arteries it is still unclear. We investigated the acute effects of 6 nM HgCl2 on endothelial function of aortic rings measuring the reactivity to phenylephrine in rings incubated, or not, with HgCl2 for 45 min, the protein expression for cyclooxygenase 2 (COX-2) and the AT1 receptor. HgCl2 increased Rmax and pD2 to phenylephrine without changing the vasorelaxation induced by acetylcholine and sodium nitroprusside. Endothelial damage abolished the increased reactivity to phenylephrine. The increase of Rmax and pD2 produced by L-NAME was smaller in the presence of HgCl2. Enalapril, losartan, indomethacin, furegrelate, the selective COX-2 inhibitor NS 398, superoxide dismutase and the NADPH oxidase inhibitor apocynin reverted HgCl2 effects on the reactivity to phenylephrine, COX-2 protein expression was increased, and AT1 expression reduced. At low concentration, below the reference values, HgCl2 increased vasoconstrictor activity by reducing NO bioavailability due to increased ROS production by NADPH oxidase activity. Results suggest that this is due to local release of angiotensin II and prostanoid vasoconstrictors. Results also suggest that acute low concentration mercury exposure, occurring time to time could induce vascular injury due to endothelial oxidative stress and contributing to increase peripheral resistance, being a high risk factor for public health.

Collaboration


Dive into the Ivanita Stefanon's collaboration.

Top Co-Authors

Avatar

Dalton Valentim Vassallo

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Alessandra Simão Padilha

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

José Geraldo Mill

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Aurélia Araújo Fernandes

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Rogério Faustino Ribeiro Junior

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Maylla Ronacher Simões

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Thaís de Oliveira Faria

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rogério Faustino Ribeiro

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar

Fabiana Dayse Magalhães Siman

Universidade Federal do Espírito Santo

View shared research outputs
Researchain Logo
Decentralizing Knowledge