Thaís de Oliveira Faria
Universidade Federal do Espírito Santo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thaís de Oliveira Faria.
PLOS ONE | 2013
Camila Cruz Pereira Almenara; Gilson Brás Broseghini-Filho; Marcus V. A. Vescovi; Jhuli Keli Angeli; Thaís de Oliveira Faria; Ivanita Stefanon; Dalton Valentim Vassallo; Alessandra Simão Padilha
Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L−1 cadmium chloride (CdCl2) in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD) or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the development of atherosclerosis.
Free Radical Biology and Medicine | 2014
Edna Aparecida Silveira; Fabiana Dayse Magalhães Siman; Thaís de Oliveira Faria; Marcos Vinícius A. Vescovi; Lorena Barros Furieri; Juliana Hott de Fúcio Lizardo; Ivanita Stefanon; Alessandra Simão Padilha; Dalton Valentim Vassallo
Chronic lead exposure induces hypertension affecting endothelial function. We investigated whether low-concentration lead exposure alters blood pressure and vascular reactivity, focusing on the roles of NO, oxidative stress, cyclooxygenase-derived vasoconstrictor prostanoids, and the local angiotensin-renin system. Aortic rings from 3-month-old Wistar rats were treated daily with lead acetate (first dose 4mg/100g, subsequent doses 0.05mg/100g, im) or vehicle for 30 days. Treatment increased lead blood levels (12μg/dl), blood pressure, and aortic ring contractile response to phenylephrine (1nM-100mM). Contractile response after L-NAME administration increased in both groups but was higher after lead treatment. Lead effects on Rmax decreased more after apocynin and superoxide dismutase administration compared to control. Indomethacin reduced phenylephrine response more after lead treatment than in controls. The selective COX-2 inhibitor NS398, thromboxane A2/prostaglandin H2 receptor antagonist SQ 29,548, TXA2 synthase inhibitor furegrelate, EP1 receptor antagonist SC 19220, and ACE inhibitor and AT1 receptor antagonist losartan reduced phenylephrine responses only in vessels from lead-treated rats. Basal and stimulated NO release was reduced and local O2(-) liberation increased in the lead-treated group compared to controls. eNOS, iNOS, and AT1 receptor protein expression increased with lead exposure, but COX-2 protein expression decreased. This is the first demonstration that blood Pb(2+) (12µg/dl) concentrations below the WHO-established values increased systolic blood pressure and vascular phenylephrine reactivity. This effect was associated with reduced NO bioavailability, increased reactive oxygen species production, increased participation of COX-derived contractile prostanoids, and increased renin-angiotensin system activity.
PLOS ONE | 2012
Núbia Belem Lemos; Jhuli Keli Angeli; Thaís de Oliveira Faria; Rogério Faustino Ribeiro Junior; Dalton Valentim Vassallo; Alessandra Simão Padilha; Ivanita Stefanon
Mercury is an environmental pollutant that reduces nitric oxide (NO) bioavailability and increases oxidative stress, having a close link with cardiovascular diseases, as carotid atherosclerosis, myocardial infarction, coronary heart disease and hypertension. One of the main sites affected by oxidative stress, which develops atherosclerosis, is the aorta. Under acute exposure to low mercury concentrations reactive oxygen species (ROS) production were only reported for resistance vessels but if low concentrations of mercury also affect conductance arteries it is still unclear. We investigated the acute effects of 6 nM HgCl2 on endothelial function of aortic rings measuring the reactivity to phenylephrine in rings incubated, or not, with HgCl2 for 45 min, the protein expression for cyclooxygenase 2 (COX-2) and the AT1 receptor. HgCl2 increased Rmax and pD2 to phenylephrine without changing the vasorelaxation induced by acetylcholine and sodium nitroprusside. Endothelial damage abolished the increased reactivity to phenylephrine. The increase of Rmax and pD2 produced by L-NAME was smaller in the presence of HgCl2. Enalapril, losartan, indomethacin, furegrelate, the selective COX-2 inhibitor NS 398, superoxide dismutase and the NADPH oxidase inhibitor apocynin reverted HgCl2 effects on the reactivity to phenylephrine, COX-2 protein expression was increased, and AT1 expression reduced. At low concentration, below the reference values, HgCl2 increased vasoconstrictor activity by reducing NO bioavailability due to increased ROS production by NADPH oxidase activity. Results suggest that this is due to local release of angiotensin II and prostanoid vasoconstrictors. Results also suggest that acute low concentration mercury exposure, occurring time to time could induce vascular injury due to endothelial oxidative stress and contributing to increase peripheral resistance, being a high risk factor for public health.
Free Radical Biology and Medicine | 2013
Jhuli Keli Angeli; Camila Almenara Cruz Pereira; Thaís de Oliveira Faria; Ivanita Stefanon; Alessandra Simão Padilha; Dalton Valentim Vassallo
Cadmium is an environmental pollutant that is closely linked with cardiovascular diseases, such as atherosclerosis and hypertension. Moreover, cadmium can induce an increase in oxidative stress. One of the main sites affected by oxidative stress is the aorta, which consequently develops atherosclerosis. However, there are few reports demonstrating aortic effects induced by small concentrations of cadmium that are similar to those found in the blood resulting from occupational exposure. Furthermore, several studies have reported on chronic cadmium exposure, and the results of these studies may have been influenced by the secondary effects induced by this metal, such as hypertension. Therefore, we investigated the effects of acute cadmium exposure on the vascular reactivity to phenylephrine of aortic rings isolated from male Wistar rats. Cadmium increased phenylephrine reactivity without changing the vasorelaxation induced by acetylcholine and sodium nitroprusside. Endothelial damage or incubation with L-NAME shifted the phenylephrine concentration-response curves leftward in arteries incubated with or without cadmium, but the curves were shifted to a lesser degree after cadmium incubation. Enalapril, losartan, the nonselective COX inhibitor indomethacin, the TXA(2) synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the EP1 receptor antagonist SC 19.220, superoxide dismutase, and the NADPH oxidase inhibitor apocynin partially reverted the cadmium-induced effects on the reactivity to phenylephrine. Cadmium exposure increased vasoconstrictor activity by reducing NO bioavailability owing to the increased production of ROS by NADPH oxidase. The results of the tested cadmium concentration, which is below the reference values, suggest that acute cadmium exposure may induce vascular injury through endothelial oxidative stress. These data contribute to the evidence indicating that cadmium is a high risk to public health.
PLOS ONE | 2012
Aucelia C.S. de Belchior; Jhuli Keli Angeli; Thaís de Oliveira Faria; Fabiana Dayse Magalhães Siman; Edna Aparecida Silveira; Eduardo Frizzera Meira; Carlos Peres Da Costa; Dalton Valentim Vassallo; Alessandra Simão Padilha
Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model.
Archives of Medical Research | 2011
Thaís de Oliveira Faria; Marcelo Perim Baldo; Maylla Ronacher Simões; Raquel Binda Pereira; José Geraldo Mill; Dalton Valentim Vassallo; Ivanita Stefanon
BACKGROUND AND AIMS We evaluated the use of body weight (BW) loss soon after acute myocardial infarction (MI) in rats as a marker of acute heart failure (HF). METHODS Female Wistar rats (200-240 g) were submitted either to sham operation or to coronary artery occlusion. In individual cages, daily BW and food and water intake were measured. Seven days later, cardiac function was evaluated by left ventricular catheterization. HF was defined by a left ventricular end-diastolic pressure greater than the upper limit of the 95% confidence interval. MI group was then divided into those that developed HF (n = 27; MI-HF) and those that did not (n = 47; MI). RESULTS The MI-HF group experienced increased BW loss (sham: 4.2 ± 0.6% MI: 0.4 ± 0.8%, MI-HF: -4.9 ± 1.2%; p <0.05) and reduced water and food intake compared with other groups. HF animals showed greater lung weight (sham: 1.460 ± 0.076 g, MI: 1.748 ± 0.086 g, MI-HF: 2.033 ± 0.13 g; p <0.05). Infarct area was significantly different between the groups (MI: 35.9 ± 0.9%, MI-HF: 39.7 ± 1.3%; p <0.05). ROC curve showed that BW loss over 7 days has 100% sensitivity and 72.3% specificity for identifying acute HF. Moreover, excluding the effect of infarct area on these results, a sample of animals with the same infarct area displayed similar morphometric and hemodynamic patterns as the entire sample. Multivariate linear regression analysis confirmed that BW loss is a HF marker independent of infarct area. CONCLUSIONS BW is an easy and reliable noninvasive method to detect HF early after MI in rats.
Pharmacological Reports | 2015
Eduardo Frizzera Meira; Fabiana Dayse Magalhães Siman; Thaís de Oliveira Faria; Rogério Faustino Ribeiro Junior; Priscila Rossi de Batista; Ivanita Stefanon; Dalton Valentim Vassallo; Alessandra Simão Padilha
BACKGROUND Ouabain is a digitalis compound that inhibits the Na(+),K(+)-ATPase (NKA) activity inducing increment in cardiac force. However, this effect seems to be dose dependent. At low concentration, ouabain can induce an increase of NKA activity. METHODS We investigated the effects of ouabain administration (25 μg/kg/day) for 15 days on cardiac contractility and NKA activity. Blood pressure and left ventricular papillary muscle contraction from placebo and ouabain-treated rats for 15 (OUA15) days were evaluated. Isometric force, post-rest potentiation, positive inotropic intervention produced by isoproterenol, and tetanic tension were measured. The activity and protein expression levels of α1 and α2 isoforms of NKA, sodium calcium exchanger (NCX), sarcoplasmic reticulum calcium ATPase (SERCA2a) and phospholamban (PLB) were also measured. RESULTS Systolic and diastolic blood pressures increased after treatment with ouabain. However, isometric tension was reduced in the ouabain treated group. Post-rest potentiation, time parameters, inotropic interventions by isoproterenol and tetanic tension did not change. In the ouabain treated group, NKA activity was increased (Oua 406.16 ± 70.6 vs. CT 282.80 ± 80.5) while protein expression of the α1 isoform of NKA was reduced (Oua 0.97 ± 0.06 vs. CT 0.76 ± 0.05). No changes were observed in protein expression of α2 isoform of NKA, NCX, SERCA2a and PLB. Therefore, although 15-day ouabain treatment increases blood pressure (Oua: 116.4 ± 3 vs. CT: 99.9 ± 3), treatment also reduces isometric tension development (Oua: 0.34 ± 0.14 vs. CT: 0.56 ± 0.22). CONCLUSION We suggest that the effects induced by ouabain in the isolated cardiac muscle could be related at least in part, to changes in NKA activity.
PLOS ONE | 2014
Thaís de Oliveira Faria; Gustavo Pinto Costa; Camila Cruz Pereira Almenara; Jhuli Keli Angeli; Dalton Valentim Vassallo; Ivanita Stefanon; Paula Frizera Vassallo
Right ventricle systolic dysfunction is a major risk factor for death and heart failure after myocardial infarction (MI). Heavy metal exposure has been associated with the development of several cardiovascular diseases, such as MI. The aim of this study was to investigate whether chronic exposure to low doses of mercury chloride (HgCl2) enhances the functional deterioration of right ventricle strips after MI. Male Wistar rats were divided into four groups: Control (vehicle); HgCl2 (exposure during 4 weeks- 1st dose 4.6 µg/kg, subsequent dose 0.07 µg/kg/day, i.m. to cover daily loss); MI surgery induced and HgCl2-MI groups. One week after MI, the morphological and hemodynamic measurements and isometric tension of right ventricle strips were investigated. The chronic HgCl2 exposure did not worsen the injury compared with MI alone in the morphological or hemodynamic parameters evaluated. At basal conditions, despite similar maximum isometric force at L-max, relaxation time was increased in the MI group but unaffected in the HgCl2-MI compared to the Control group. Impairment of the sarcoplasmic reticulum (SR) function and reduction in the sarcolemmal calcium influx were observed in MI group associated with SERCA2a reduction and increased PLB protein expression. Induction of MI in chronic HgCl2 exposed rats did not cause any alteration in the developed force at L-max, lusitropic function or −dF/dt except for a tendency of a reduction SR function. These findings could be partially explained by the normalization in the sarcolemmal calcium influx and the increase in NCX protein expression observed only in this group. These results suggest that chronic exposure to low doses of HgCl2 prevents the impaired SR function and the reduced sarcolemmal calcium influx observed in MI likely by acting on NCX, PLB and SERCA2a protein expression.
Journal of Nutritional Biochemistry | 2017
Glauciene J. Sousa; Phablo Wendell C. Oliveira; Breno Valentim Nogueira; Antônio F. Melo Junior; Thaís de Oliveira Faria; Eduardo Frizera Meira; José Geraldo Mill; Nazaré Souza Bissoli; Marcelo Perim Baldo
Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy. Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected.
European Journal of Applied Physiology | 2010
Thaís de Oliveira Faria; Gabriel Pelegrineti Targueta; Jhuli Keli Angeli; Edna Aparecida Silveira Almeida; Ivanita Stefanon; Dalton Valentim Vassallo; Juliana Hott de Fúcio Lizardo