Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ive De Smet is active.

Publication


Featured researches published by Ive De Smet.


Nature Cell Biology | 2008

The auxin influx carrier LAX3 promotes lateral root emergence

Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze

Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.


Development | 2007

Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis

Ive De Smet; Takuya Tetsumura; Bert De Rybel; Nicolas Frei dit Frey; Laurent Laplaze; Ilda Casimiro; Ranjan Swarup; Mirande Naudts; Steffen Vanneste; Dominique Audenaert; Dirk Inzé; Malcolm J. Bennett; Tom Beeckman

In plants, the developmental mechanisms that regulate the positioning of lateral organs along the primary root are currently unknown. We present evidence on how lateral root initiation is controlled in a spatiotemporal manner in the model plant Arabidopsis thaliana. First, lateral roots are spaced along the main axis in a regular left-right alternating pattern that correlates with gravity-induced waving and depends on AUX1, an auxin influx carrier essential for gravitropic response. Second, we found evidence that the priming of pericycle cells for lateral root initiation might take place in the basal meristem, correlating with elevated auxin sensitivity in this part of the root. This local auxin responsiveness oscillates with peaks of expression at regular intervals of 15 hours. Each peak in the auxin-reporter maximum correlates with the formation of a consecutive lateral root. Third, auxin signaling in the basal meristem triggers pericycle cells for lateral root initiation prior to the action of INDOLE-3-ACETIC ACID14 (SOLITARY ROOT).


Science | 2008

Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the Arabidopsis Root

Ive De Smet; Valya Vassileva; Bert De Rybel; Mitchell P. Levesque; Wim Grunewald; Daniël Van Damme; Giel Van Noorden; Mirande Naudts; Gert Van Isterdael; Rebecca De Clercq; Jean Y. J. Wang; Nicholas Meuli; Steffen Vanneste; Jirri Friml; Pierre Hilson; Gerd Jürgens; Gwyneth C. Ingram; Dirk Inzé; Philip N. Benfey; Tom Beeckman

During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.


The Plant Cell | 2005

Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana

Steffen Vanneste; Bert De Rybel; Gerrit T.S. Beemster; Karin Ljung; Ive De Smet; Gert Van Isterdael; Mirande Naudts; Ryusuke Iida; Wilhelm Gruissem; Masao Tasaka; Dirk Inzé; Hidehiro Fukaki; Tom Beeckman

To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the auxin/indole-3-acetic acid (AUX/IAA) signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.


Trends in Plant Science | 2013

Lateral root development in Arabidopsis: fifty shades of auxin

Tatsuaki Goh; Ianto Roberts; Soazig Guyomarc’h; Mikaë l Lucas; Ive De Smet; Hidehiro Fukaki; Tom Beeckman; Malcolm J. Bennett; Laurent Laplaze

The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.


Trends in Plant Science | 2010

The roots of a new green revolution

Griet Den Herder; Gert Van Isterdael; Tom Beeckman; Ive De Smet

A significant increase in shoot biomass and seed yield has always been the dream of plant biologists who wish to dedicate their fundamental research to the benefit of mankind; the first green revolution about half a century ago represented a crucial step towards contemporary agriculture and the development of high-yield varieties of cereal grains. Although there has been a steady rise in our food production from then onwards, the currently applied technology and the available crop plants will not be sufficient to feed the rapidly growing world population. In this opinion article, we highlight several below-ground characteristics of plants such as root architecture, nutrient uptake and nitrogen fixation as promising features enabling a very much needed new green revolution.


Plant Molecular Biology | 2006

Lateral Root Initiation or the Birth of a New Meristem

Ive De Smet; Steffen Vanneste; Dirk Inzé; Tom Beeckman

Root branching happens through the formation of new meristems out of a limited number of pericycle cells inside the parent root. As opposed to shoot branching, the study of lateral root formation has been complicated due to its internal nature, and a lot of questions remain unanswered. However, due to the availability of new molecular tools and more complete genomic data in the model species Arabidopsis, the probability to find new and crucial elements in the lateral root formation pathway has increased. Increasingly more data are supporting the idea that lateral root founder cells become specified in young root parts before differentiation is accomplished. Next, pericycle founder cells undergo anticlinal asymmetric, divisions followed by an organized cell division pattern resulting in the formation of a new organ. The whole process of cell cycle progression and stimulation of the molecular pathway towards lateral root initiation is triggered by the plant hormone auxin. In this review, we aim to give an overview on the developmental events taking place from the very early specification of founder cells in the pericycle until the first anticlinal divisions by combining the knowledge originating from classical physiology studies with new insights from genetic-molecular analyses. Based on the current knowledge derived from recent genetic and developmental studies, we propose here a hypothetical model for LRI.


Nature Cell Biology | 2009

Receptor-like kinases shape the plant

Ive De Smet; Ute Voß; Gerd Jürgens; Tom Beeckman

To generate the various tissues and organs that build up the adult body, plants and animals require organized formative cell divisions and correct cell specification. In plants, these processes are controlled mainly by phytohormones and transcriptional networks. Recently, ligand–receptor-like kinase signalling pathways have been revealed as additional potentially crucial regulators of cell specification in plants. We review here the importance of such signalling cascades for plant growth and development, and we discuss, where possible, similarities to well-investigated cascades in animals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Bimodular auxin response controls organogenesis in Arabidopsis

Ive De Smet; Steffen Lau; Ute Voß; Steffen Vanneste; René Benjamins; Eike H. Rademacher; Alexandra Schlereth; Bert De Rybel; Valya Vassileva; Wim Grunewald; Mirande Naudts; Mitchell P. Levesque; Jasmin S. Ehrismann; Dirk Inzé; Christian Luschnig; Philip N. Benfey; Dolf Weijers; Marc Van Montagu; Malcolm J. Bennett; Gerd Jürgens; Tom Beeckman

Like animals, the mature plant body develops via successive sets of instructions that determine cell fate, patterning, and organogenesis. In the coordination of various developmental programs, several plant hormones play decisive roles, among which auxin is the best-documented hormonal signal. Despite the broad range of processes influenced by auxin, how such a single signaling molecule can be translated into a multitude of distinct responses remains unclear. In Arabidopsis thaliana, lateral root development is a classic example of a developmental process that is controlled by auxin at multiple stages. Therefore, we used lateral root formation as a model system to gain insight into the multifunctionality of auxin. We were able to demonstrate the complementary and sequential action of two discrete auxin response modules, the previously described SOLITARY ROOT/INDOLE-3-ACETIC ACID (IAA)14-AUXIN REPONSE FACTOR (ARF)7-ARF19–dependent lateral root initiation module and the successive BODENLOS/IAA12-MONOPTEROS/ARF5–dependent module, both of which are required for proper organogenesis. The genetic framework in which two successive auxin response modules control early steps of a developmental process adds an extra dimension to the complexity of auxin’s action.


Philosophical Transactions of the Royal Society B | 2012

Root system architecture: insights from Arabidopsis and cereal crops

Stephanie Smith; Ive De Smet

Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the importance of investigating specific aspects of root architecture in both the model plant Arabidopsis thaliana and (cereal) crops, presents novel insights into elements that are currently hardly addressed and provides new tools and technologies to study various aspects of root system architecture. This introduction gives a broad overview of the importance of the root system and provides a snapshot of the molecular control mechanisms associated with root branching and responses to the environment in A. thaliana and cereal crops.

Collaboration


Dive into the Ive De Smet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge