Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivette Medina is active.

Publication


Featured researches published by Ivette Medina.


The Journal of Infectious Diseases | 2001

Long-Term Entecavir Treatment Results in Sustained Antiviral Efficacy and Prolonged Life Span in the Woodchuck Model of Chronic Hepatitis Infection

Richard J. Colonno; Eugene V. Genovesi; Ivette Medina; Lucinda Lamb; Stephen K. Durham; Meei-Li Huang; Lawrence Corey; Margaret Littlejohn; Steven Locarnini; Bud C. Tennant; Burt Rose; Junius M. Clark

Entecavir (ETV) is a guanosine nucleoside analogue with potent antiviral efficacy in woodchucks chronically infected with woodchuck hepatitis virus. To explore the consequences of prolonged virus suppression, woodchucks received ETV orally for 8 weeks and then weekly for 12 months. Of the 6 animals withdrawn from therapy and monitored for an additional 28 months, 3 had a sustained antiviral response and had no evidence of hepatocellular carcinoma (HCC). Of the 6 animals that continued on a weekly ETV regimen for an additional 22 months, 4 exhibited serum viral DNA levels near the lower limit of detection for >2 years and had no evidence of HCC. Viral antigens and covalently closed circular DNA levels in liver samples were significantly reduced in all animals. ETV was well tolerated, and there was no evidence of resistant variants. On the basis of historical data, long-term ETV treatment appeared to significantly prolong the life of treated animals and delay the emergence of HCC.


Antimicrobial Agents and Chemotherapy | 2004

Orally Active Fusion Inhibitor of Respiratory Syncytial Virus

Christopher Cianci; Kuo-Long Yu; Keith D. Combrink; Ny Sin; Bradley C. Pearce; Alan X. Wang; Rita L. Civiello; Stacey Voss; Guangxiang Luo; Kathy Kadow; Eugene V. Genovesi; Brian Lee Venables; Hatice Belgin Gulgeze; Ashok K. Trehan; Jennifer James; Lucinda Lamb; Ivette Medina; Julia Roach; Zheng Yang; Lisa Zadjura; Richard J. Colonno; Junius M. Clark; Nicholas A. Meanwell; Mark Krystal

ABSTRACT BMS-433771 was found to be a potent inhibitor of respiratory syncytial virus (RSV) replication in vitro. It exhibited excellent potency against multiple laboratory and clinical isolates of both group A and B viruses, with an average 50% effective concentration of 20 nM. Mechanism-of-action studies demonstrated that BMS-433771 inhibits the fusion of lipid membranes during both the early virus entry stage and late-stage syncytium formation. After isolation of resistant viruses, resistance was mapped to a series of single amino acid mutations in the F1 subunit of the fusion protein. Upon oral administration, BMS-433771 was able to reduce viral titers in the lungs of mice infected with RSV. This new class of orally active RSV fusion inhibitors offers potential for clinical development.


Antimicrobial Agents and Chemotherapy | 2004

Oral Efficacy of a Respiratory Syncytial Virus Inhibitor in Rodent Models of Infection

Christopher Cianci; Eugene V. Genovesi; Lucinda Lamb; Ivette Medina; Zheng Yang; Lisa Zadjura; Hyekyung Yang; Celia D'Arienzo; Ny Sin; Kuo-Long Yu; Keith D. Combrink; Zhufang Li; Richard J. Colonno; Nicholas A. Meanwell; Junius M. Clark; Mark Krystal

ABSTRACT BMS-433771 is a potent inhibitor of respiratory syncytial virus (RSV) replication in vitro. Mechanism of action studies have demonstrated that BMS-433771 halts virus entry through inhibition of F protein-mediated membrane fusion. BMS-433771 also exhibited in vivo efficacy following oral administration in a mouse model of RSV infection (C. Cianci, K. Y. Yu, K. Combrink, N. Sin, B. Pearce, A. Wang, R. Civiello, S. Voss, G. Luo, K. Kadow, E. Genovesi, B. Venables, H. Gulgeze, A. Trehan, J. James, L. Lamb, I. Medina, J. Roach, Z. Yang, L. Zadjura, R. Colonno, J. Clark, N. Meanwell, and M. Krystal, Antimicrob. Agents Chemother. 48:413-422, 2004). In this report, the in vivo efficacy of BMS-433771 against RSV was further examined in the BALB/c mouse and cotton rat host models of infection. By using the Long strain of RSV, prophylactic efficacy via oral dosing was observed in both animal models. A single oral dose, administered 1 h prior to intranasal RSV inoculation, was as effective against infection as a 4-day b.i.d. dosing regimen in which the first oral dose was given 1 h prior to virus inoculation. Results of dose titration experiments suggested that RSV infection was more sensitive to inhibition by BMS-433771 treatment in the BALB/c mouse host than in the cotton rat. This was reflected by the pharmacokinetic and pharmacodynamic analysis of the efficacy data, where the area under the concentration-time curve required to achieve 50% of the maximum response was ∼7.5-fold less for mice than for cotton rats. Inhibition of RSV by BMS-433771 in the mouse is the result of F1-mediated inhibition, as shown by the fact that a virus selected for resistance to BMS-433771 in vitro and containing a single amino acid change in the F1 region was also refractory to treatment in the mouse host. BMS-433771 efficacy against RSV infection was also demonstrated for mice that were chemically immunosuppressed by cyclophosphamide treatment, indicating that compound inhibition of the virus did not require an active host immune response.


Antimicrobial Agents and Chemotherapy | 2002

In Vitro and In Vivo Activities of a Novel Cephalosporin, BMS-247243, against Methicillin-Resistant and -Susceptible Staphylococci

Joan Fung-Tomc; Junius M. Clark; Beatrice Minassian; Michael J. Pucci; Yuan-Hwang Tsai; Elizabeth Gradelski; Lucinda Lamb; Ivette Medina; E Huczko; B Kolek; Susan Chaniewski; Cheryl Ferraro; Thomas Washo; Daniel P. Bonner

ABSTRACT The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) with decreased susceptibility to vancomycin has intensified the search for alternative therapies for the treatment of infections caused by this organism. One approach has been to identify a β-lactam with improved affinity for PBP 2a, the target enzyme responsible for methicillin resistance in staphylococci. BMS-247243 is such a candidate, with MICs that inhibit 90% of isolates tested (MIC90s) of 4, 2, and 8 μg/ml for methicillin-resistant strains of S. aureus, S. epidermidis, and S. haemolyticus, respectively, as determined on plates with Mueller-Hinton agar and 2% NaCl. The BMS-247243 MICs for MRSA were minimally affected by the susceptibility testing conditions (inoculum size, prolonged incubation, addition of salt to the test medium) or by staphylococcal β-lactamases. BMS-247243 MIC90s for methicillin-susceptible staphylococcal species ranged from ≤0.25 to 1 μg/ml. The BMS-247243 MIC90 for β-lactamase-producing S. aureus strains was fourfold higher than that for β-lactamase-nonproducing strains. BMS-247243 is hydrolyzed by staphylococccal β-lactamases at 4.5 to 26.2% of the rates measured for cephaloridine. The affinity of BMS-247243 for PBP 2a was >100-fold better than that of methicillin or cefotaxime. BMS-247243 is bactericidal for MRSA, killing the bacteria twice as fast as vancomycin. These in vitro activities of BMS-247243 correlated with its in vivo efficacy against infections in animals, including the neutropenic murine thigh and rabbit endocarditis models involving MRSA strains. In conclusion, BMS-247243 has in vitro and in vivo activities against methicillin-resistant staphylococci and thus may prove to be useful in the treatment of infections caused by these multidrug-resistant organisms.


Bioorganic & Medicinal Chemistry Letters | 2009

Respiratory syncytial virus fusion inhibitors. Part 7: Structure–activity relationships associated with a series of isatin oximes that demonstrate antiviral activity in vivo

Ny Sin; Brian Lee Venables; Keith D. Combrink; H. Belgin Gulgeze; Kuo-Long Yu; Rita L. Civiello; Jan Willem Thuring; X. Alan Wang; Zheng Yang; Lisa Zadjura; Anthony Marino; Kathleen F. Kadow; Christopher Cianci; Junius Clarke; Eugene V. Genovesi; Ivette Medina; Lucinda Lamb; Mark Krystal; Nicholas A. Meanwell

A series of bezimidazole-isatin oximes were prepared and profiled as inhibitors of respiratory syncytial virus (RSV) replication in cell culture. Structure-activity relationship studies were directed toward optimization of antiviral activity, cell permeability and metabolic stability in human liver micorosomes (HLM). Parallel combinatorial synthetic chemistry was employed to functionalize isatin oximes via O-alkylation which quickly identified a subset of small, lipophilic substituents that established good potency for the series. Further optimization of the isatin oxime derivatives focused on introduction of nitrogen atoms to the isatin phenyl ring to provide a series of aza-isatin oximes with significantly improved PK properties. Several aza-isatin oximes analogs displayed targeted metabolic stability in HLM and permeability across a confluent monolayer of CaCo-2 cells. These studies identified several compounds, including 18i, 18j and 18n that demonstrated antiviral activity in the BALB/c mouse model of RSV infection following oral dosing.


Antiviral Research | 2000

Antiviral efficacy of lobucavir (BMS-180194), a cyclobutyl-guanosine nucleoside analogue, in the woodchuck (Marmota monax) model of chronic hepatitis B virus (HBV) infection

Eugene V. Genovesi; Lucinda Lamb; Ivette Medina; D Taylor; M Seifer; S Innaimo; Richard J. Colonno; Junius M. Clark

Lobucavir (BMS-180194), a cyclobutyl-guanosine nucleoside analogue, effectively reduced WHV-viremia in chronically infected carrier woodchucks (Marmota monax) by daily per os treatment. WHV-viremia in the animals was measured by the serum content of hybridizable WHV-genomic DNA. Lobucavir, given at daily doses of 10 and 20 mg/kg body weight, reduced WHV-viremia by a 10- to 200-fold range during therapy. Lobucavir, given at 5 mg/kg, suppressed WHV-viremia by a 10- to 30-fold range, whereas a 0.5 mg/kg dose had no significant effect. WHV-viremia was also measured by hepadnaviral endogenous polymerase activity (EPA) in sera of animals treated for 6 weeks at 5 and 0.5 mg/kg. Changes in EPA in sera of lobucavir treated animals were comparable to changes in WHV DNA levels. Viremia in treated carriers recrudesced to pretreatment levels by 2 weeks of therapy cessation. These results indicated that the minimally effective antiviral daily per os dose of lobucavir in WHV-carrier woodchucks was approximately 5 mg/kg.


Antimicrobial Agents and Chemotherapy | 2012

Effect of Linezolid on the 50% Lethal Dose and 50% Protective Dose in Treatment of Infections by Gram-Negative Pathogens in Naive and Immunosuppressed Mice and on the Efficacy of Ciprofloxacin in an Acute Murine Model of Septicemia

Andrea Marra; Lucinda Lamb; Ivette Medina; David M. George; Glenn Gibson; Joel R. Hardink; Jady Rugg; Jeffrey Van Deusen; John P. O'Donnell

ABSTRACT Murine models of infection were used to study the effect of linezolid on the virulence of Gram-negative bacteria and to assess potential pharmacodynamic interactions with ciprofloxacin in the treatment of these infections, prompted by observations from a recent clinical trial. Naive and immunosuppressed mice were challenged with Klebsiella pneumoniae 53A1109, K. pneumoniae GC6658, and Pseudomonas aeruginosa UC12120 in acute sepsis and pulmonary infection models, using different serial dilutions of these pathogens (groups of 8 animals each). Linezolid (100 mg/kg/dose) was administered orally at 0.5 and 4.0 h postchallenge in the sepsis model and at 4 h postchallenge followed by 2 days of twice-daily treatment in the pulmonary model. Further, ciprofloxacin alone and in combination with oral linezolid was investigated in the sepsis model. Survival was assessed for 4 and 10 days postchallenge in the systemic and respiratory models, respectively. The data were fitted to a nonlinear regression analysis to determine 50% lethal doses (LD50s) and 50% protective doses (PD50s). A clinically relevant, high-dose regimen of linezolid had no significant effect on LD50 in these models. This lack of effect was independent of immune status. A combination of oral ciprofloxacin with linezolid yielded lower PD50s than oral ciprofloxacin alone (ciprofloxacin in combination, 8.4 to 32.7 mg/kg; oral ciprofloxacin, 39.4 to 88.3 mg/kg). Linezolid did not improve the efficacy of subcutaneous ciprofloxacin (ciprofloxacin in combination, 2.0 to 2.4 mg/kg; subcutaneous ciprofloxacin, 2.0 to 2.8 mg/kg). In conclusion, linezolid does not seem to potentiate infections caused by Gram-negative pathogens or to interact antagonistically with ciprofloxacin.


Antimicrobial Agents and Chemotherapy | 1998

Efficacy of the Carbocyclic 2′-Deoxyguanosine Nucleoside BMS-200475 in the Woodchuck Model of Hepatitis B Virus Infection

Eugene V. Genovesi; Lucinda Lamb; Ivette Medina; D. Taylor; M. Seifer; S. Innaimo; Richard J. Colonno; D. N. Standring; Junius M. Clark


Bioorganic & Medicinal Chemistry Letters | 2007

Respiratory syncytial virus fusion inhibitors. Part 4: optimization for oral bioavailability.

Kuo-Long Yu; Ny Sin; Rita L. Civiello; X. Alan Wang; Keith D. Combrink; H. Belgin Gulgeze; Brian Lee Venables; J. J. Kim Wright; Richard A. Dalterio; Lisa Zadjura; Anthony Marino; Sandra A. Dando; Celia D’Arienzo; Kathleen F. Kadow; Christopher Cianci; Zhufang Li; Junius Clarke; Eugene V. Genovesi; Ivette Medina; Lucinda Lamb; Richard J. Colonno; Zheng Yang; Mark Krystal; Nicholas A. Meanwell


Bioorganic & Medicinal Chemistry Letters | 2006

Respiratory syncytial virus fusion inhibitors. Part 3: Water-soluble benzimidazol-2-one derivatives with antiviral activity in vivo.

Kuo-Long Yu; Xiangdong Alan Wang; Rita L. Civiello; Ashok K. Trehan; Bradley C. Pearce; Zhiwei Yin; Keith D. Combrink; H. Belgin Gulgeze; Yi Zhang; Kathleen F. Kadow; Christopher Cianci; Junius Clarke; Eugene V. Genovesi; Ivette Medina; Lucinda Lamb; Philip R. Wyde; Mark Krystal; Nicholas A. Meanwell

Collaboration


Dive into the Ivette Medina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge