Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivo Atanasov is active.

Publication


Featured researches published by Ivo Atanasov.


Science | 2010

Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks.

Hongrong Liu; Li Jin; Sok Boon S. Koh; Ivo Atanasov; Stan Schein; Lily Wu; Z. H. Zhou

Human Adenovirus Structures Human adenoviruses may be a common cause of acute infections in humans, but they can also be used as vectors for vaccine and therapeutic gene transfer. Rational engineering of safe adenovirus vectors has been hampered by a lack of high-resolution structural information. Two papers now describe the structure of human adenovirus using complementary techniques. Reddy et al. (p. 1071; see the Perspective by Harrison) have determined the crystal structure at 3.5 angstrom resolution, while Liu et al. (p. 1038; see the Perspective by Harrison) solved the structure to 3.6 angstrom resolution by electron microscopy. Together the structures provide insights into viral assembly, stabilization, and cell entry mechanisms. High-resolution structures provide a basis for optimizing adenovirus as a vaccine and gene-therapy vector. Construction of a complex virus may involve a hierarchy of assembly elements. Here, we report the structure of the whole human adenovirus virion at 3.6 angstroms resolution by cryo–electron microscopy (cryo-EM), revealing in situ atomic models of three minor capsid proteins (IIIa, VIII, and IX), extensions of the (penton base and hexon) major capsid proteins, and interactions within three protein-protein networks. One network is mediated by protein IIIa at the vertices, within group-of-six (GOS) tiles—a penton base and its five surrounding hexons. Another is mediated by ropes (protein IX) that lash hexons together to form group-of-nine (GON) tiles and bind GONs to GONs. The third, mediated by IIIa and VIII, binds each GOS to five surrounding GONs. Optimization of adenovirus for cancer and gene therapy could target these networks.


Journal of Molecular Biology | 2008

Subnanometer-resolution Structures of the Grass Carp Reovirus Core and Virion

Lingpeng Cheng; Qin Fang; Sanket Shah; Ivo Atanasov; Z. Hong Zhou

Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria

Feng Li; Peng Ge; Wong H. Hui; Ivo Atanasov; Kestrel Rogers; Qiang Guo; Daren Osato; Arnold M. Falick; Z. Hong Zhou; Larry Simpson

Uridine insertion/deletion RNA editing is a unique form of posttranscriptional RNA processing that occurs in mitochondria of kinetoplastid protists. We have carried out 3D structural analyses of the core editing complex or “L (ligase)-complex” from Leishmania tarentolae mitochondria isolated by the tandem affinity purification procedure (TAP). The purified material, sedimented at 20–25S, migrated in a blue native gel at 1 MDa and exhibited both precleaved and full-cycle gRNA-mediated U-insertion and U-deletion in vitro activities. The purified L-complex was analyzed by electron tomography to determine the extent of heterogeneity. Three-dimensional structural comparisons of individual particles in the tomograms revealed that a majority of the complexes have a similar shape of a slender triangle. An independent single-particle reconstruction, using a featureless Gaussian ball as the initial model, converged to a similar triangular structure. Another single-particle reconstruction, using the averaged tomography structure as the initial model, yielded a similar structure. The REL1 ligase was localized on the model to the base of the apex by decoration with REL1-specific IgG. This structure should prove useful for a detailed analysis of the editing reaction.


Structure | 2011

Atomic Model of CPV Reveals the Mechanism Used by This Single-Shelled Virus to Economically Carry Out Functions Conserved in Multishelled Reoviruses

Xuekui Yu; Peng Ge; Jiansen Jiang; Ivo Atanasov; Z. Hong Zhou

Unlike the multishelled viruses in the Reoviridae, cytoplasmic polyhedrosis virus (CPV) is single shelled, yet stable and fully capable of carrying out functions conserved within Reoviridae. Here, we report a 3.1 Å resolution cryo electron microscopy structure of CPV and derive its atomic model, consisting of 60 turret proteins (TPs), 120 each of capsid shell proteins (CSPs) and large protrusion proteins (LPPs). Two unique segments of CSP contribute to CPVs stability: an inserted protrusion domain interacting with neighboring proteins, and an N-anchor tying up CSPs together through strong interactions such as β sheet augmentation. Without the need to interact with outer shell proteins, LPP retains only the N-terminal two-third region containing a conserved helix-barrel core and interacts exclusively with CSP. TP is also simplified, containing only domains involved in RNA capping. Our results illustrate how CPV proteins have evolved in a coordinative manner to economically carry out their conserved functions.


RNA | 2010

DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures

Michael Faller; Daniel B. Toso; Michio Matsunaga; Ivo Atanasov; Rachel Senturia; Yanqiu Chen; Z. Hong Zhou; Feng Guo

DiGeorge critical region 8 (DGCR8) is essential for maturation of microRNAs (miRNAs) in animals. In the cleavage of primary transcripts of miRNAs (pri-miRNAs) by the Drosha nuclease, the DGCR8 protein directly binds and recognizes pri-miRNAs through a mechanism currently controversial. Our previous data suggest that DGCR8 trimerizes upon cooperative binding to pri-mir-30a. However, a separate study proposed a model in which a DGCR8 molecule contacts one or two pri-miRNA molecules using its two double-stranded RNA binding domains. Here, we extensively characterized the interaction between DGCR8 and pri-miRNAs using biochemical and structural methods. First, a strong correlation was observed between the association of DGCR8 with pri-mir-30a and the rate of pri-miRNA processing in vitro. Second, we show that the high binding cooperativity allows DGCR8 to distinguish pri-miRNAs from a nonspecific competitor with subtle differences in dissociation constants. The highly cooperative binding of DGCR8 to a pri-miRNA is mediated by the formation of higher-order structures, most likely a trimer of DGCR8 dimers, on the pri-miRNA. These properties are not limited to its interaction with pri-mir-30a. Furthermore, the amphipathic C-terminal helix of DGCR8 is important both for trimerization of DGCR8 on pri-miRNAs and for the cleavage of pri-miRNAs by Drosha. Finally, our three-dimensional model from electron tomography analysis of the negatively stained DGCR8-pri-mir-30a complex directly supports the trimerization model. Our study provides a molecular basis for recognition of pri-miRNAs by DGCR8. We further propose that the higher-order structures of the DGCR8-pri-miRNA complexes trigger the cleavage of pri-miRNAs by Drosha.


Journal of Virology | 2003

Three-Dimensional Localization of pORF65 in Kaposi's Sarcoma-Associated Herpesvirus Capsid

Lo P; Xuekui Yu; Ivo Atanasov; Chandran B; Zhou Zh

ABSTRACT Of the six herpesvirus capsid proteins, the smallest capsid proteins (SCPs) share the least sequence homology among herpesvirus family members and have been implicated in virus specificity during infection. The herpes simplex virus-1 (HSV-1) SCP was shown to be horn shaped and to specifically bind the upper domain of each major capsid protein in hexons but not in pentons. In Kaposis sarcoma-associated herpesvirus (KSHV), the protein encoded by the ORF65 gene (pORF65) is the putative SCP but its location remains controversial due to the absence of such horn-shaped densities from both the pentons and hexons of the KSHV capsid reconstructions. To directly locate the KSHV SCP, we have used electron cryomicroscopy and three-dimensional reconstruction techniques to compare the three-dimensional structure of KSHV capsids to that of anti-pORF65 antibody-labeled capsids. Our difference map shows prominent antibody densities bound to the tips of the hexons but not to pentons, indicating that KSHV SCP is attached to the upper domain of the major capsid protein in hexons but not to that in pentons, similar to HSV-1 SCP. The lack of horn-shaped densities on the hexons indicates that KSHV SCP exhibits structural features that are substantially different from those of HSV-1 SCP. The location of SCP at the outermost regions of the capsid suggests a possible role in mediating capsid interactions with the tegument and cytoskeletal proteins during infection.


Journal of Virology | 2003

Three-Dimensional Structures of the A, B, and C Capsids of Rhesus Monkey Rhadinovirus: Insights into Gammaherpesvirus Capsid Assembly, Maturation, and DNA Packaging

Xuekui Yu; Christine M. O'Connor; Ivo Atanasov; Blossom Damania; Dean H. Kedes; Z. Hong Zhou

ABSTRACT Rhesus monkey rhadinovirus (RRV) exhibits high levels of sequence homology to human gammaherpesviruses, such as Kaposis sarcoma-associated herpesvirus, and grows to high titers in cell cultures, making it a good model system for studying gammaherpesvirus capsid structure and assembly. We have purified RRV A, B, and C capsids, thus for the first time allowing direct structure comparisons by electron cryomicroscopy and three-dimensional reconstruction. The results show that the shells of these capsids are identical and are each composed of 12 pentons, 150 hexons, and 320 triplexes. Structural differences were apparent inside the shells and through the penton channels. The A capsid is empty, and its penton channels are open. The B capsid contains a scaffolding core, and its penton channels are closed. The C capsid contains a DNA genome, which is closely packaged into regularly spaced density shells (25Å apart), and its penton channels are open. The different statuses of the penton channels suggest a functional role of the channels during capsid maturation, and the overall structural similarities of RRV capsids to alphaherpesvirus capsids suggest a common assembly and maturation pathway. The RRV A capsid reconstruction at a 15-Å resolution, the best achieved for gammaherpesvirus particles, reveals overall structural similarities to alpha- and betaherpesvirus capsids. However, the outer regions of the capsid, including densities attributed to the Ta triplex and the small capsomer-interacting protein (SCIP or ORF65), exhibit prominent differences from their structural counterparts in alphaherpesviruses. This structural disparity suggests that SCIP and the triplex, together with tegument and envelope proteins, confer structural and potentially functional specificities to alpha-, beta-, and gammaherpesviruses.


Journal of Virology | 2005

Three-Dimensional Localization of the Smallest Capsid Protein in the Human Cytomegalovirus Capsid

Xuekui Yu; Sanket Shah; Ivo Atanasov; Lo P; Fenyong Liu; William J. Britt; Zhou Zh

ABSTRACT The smallest capsid proteins (SCPs) of the human herpesviruses differ substantially in size and sequence and are thought to impart some unique aspects of infection to their respective viruses. We used electron cryomicroscopy and antibody labeling to show that the 8-kDa SCP of human cytomegalovirus is attached only to major capsid protein subunits of the hexons, not the pentons. Thus, the SCPs of different herpesviruses illustrate that a protein can evolve significantly in sequence, structure, and function, while preserving its role in the architecture of the virus by binding to a specific partner in a specific oligomeric state.


Journal of Controlled Release | 2013

Engineering polypeptide coatings to augment gene transduction and in vivo stability of adenoviruses.

Ziyue Karen Jiang; Sok Boon S. Koh; Makoto Sato; Ivo Atanasov; Mai Johnson; Z. Hong Zhou; Timothy J. Deming; Lily Wu

We sought to modify adenoviral (Ad) particles by incorporating the advantageous characteristics of non-viral gene delivery vehicles to complement the viral vectors. α-Amino acid-N-carboxyanhydride chemistry was used to synthesize homopolypeptides and diblock copolypeptides that possess well-defined secondary structures. Using cryo-electron and fluorescence microscopy, we showed that these polypeptides can coat the surfaces of Ad particles in a non-covalent manner to modify their transduction properties. The coated Ad particles were found to bind to and be internalized by cells. In contrast to reports using covalently PEGylated Ad particles, we found that our physically coated Ad hybrid complexes facilitate gene transfer both in vitro and in vivo. We showed that our polypeptide coating was able to shield the Ad particles from the neutralizing effect of antibodies and mitigate the binding of blood coagulation factor (Factor X) in vitro. The coating also reduced the antigenicity of Ad in immunocompetent mice. The biodistribution of the systemically administered hybrid complexes mirrored the behavior of both viral and non-viral vectors, exhibiting liver tropism as well as enhanced lung transduction. These data demonstrated that our non-covalent modification was able to alter Ads interactions with cells and organs with retention of transduction efficiency. Advantages such as facile coating of the Ad vector, design flexibility and ease of attaching ligands to the polypeptides make this system potentially useful as a platform for adding functionalities to Ad to target cancer metastasis.


PLOS ONE | 2013

Single Particle Electron Microscopy Analysis of the Bovine Anion Exchanger 1 Reveals a Flexible Linker Connecting the Cytoplasmic and Membrane Domains

Jiansen Jiang; Nathaniel Magilnick; Kirill Tsirulnikov; Natalia Abuladze; Ivo Atanasov; Peng Ge; Mohandas Narla; Alexander Pushkin; Z. Hong Zhou; Ira Kurtz

Anion exchanger 1 (AE1) is the major erythrocyte membrane protein that mediates chloride/bicarbonate exchange across the erythrocyte membrane facilitating CO2 transport by the blood, and anchors the plasma membrane to the spectrin-based cytoskeleton. This multi-protein cytoskeletal complex plays an important role in erythrocyte elasticity and membrane stability. An in-frame AE1 deletion of nine amino acids in the cytoplasmic domain in a proximity to the membrane domain results in a marked increase in membrane rigidity and ovalocytic red cells in the disease Southeast Asian Ovalocytosis (SAO). We hypothesized that AE1 has a flexible region connecting the cytoplasmic and membrane domains, which is partially deleted in SAO, thus causing the loss of erythrocyte elasticity. To explore this hypothesis, we developed a new non-denaturing method of AE1 purification from bovine erythrocyte membranes. A three-dimensional (3D) structure of bovine AE1 at 2.4 nm resolution was obtained by negative staining electron microscopy, orthogonal tilt reconstruction and single particle analysis. The cytoplasmic and membrane domains are connected by two parallel linkers. Image classification demonstrated substantial flexibility in the linker region. We propose a mechanism whereby flexibility of the linker region plays a critical role in regulating red cell elasticity.

Collaboration


Dive into the Ivo Atanasov's collaboration.

Top Co-Authors

Avatar

Z. Hong Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Xuekui Yu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ira Kurtz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Ge

University of California

View shared research outputs
Top Co-Authors

Avatar

Sanket Shah

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Fenyong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiansen Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Lily Wu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge