Ivo Micha Vellekoop
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivo Micha Vellekoop.
Optics Letters | 2007
Ivo Micha Vellekoop; Allard Mosk
We report focusing of coherent light through opaque scattering materials by control of the incident wavefront. The multiply scattered light forms a focus with a brightness that is up to a factor of 1000 higher than the brightness of the normal diffuse transmission.
Nature Photonics | 2010
Ivo Micha Vellekoop; Aart Lagendijk; Allard Mosk
Optical microscopy and manipulation methods rely on the ability to focus light to a small volume. However, in inhomogeneous media such as biological tissue, light is scattered out of the focusing beam. Disordered scattering is thought to fundamentally limit the resolution and penetration depth of optical methods1,2,3. Here we demonstrate, in an optical experiment, that scattering can be used to improve, rather than deteriorate, the sharpness of the focus. The resulting focus is even sharper than that in a transparent medium. By using scattering in the medium behind a lens, light was focused to a spot ten times smaller than the diffraction limit of that lens. Our method is the optical equivalent of highly successful methods for improving the resolution and communication bandwidth of ultrasound, radio waves and microwaves4,5,6. Our results, obtained using spatial wavefront shaping, apply to all coherent methods for focusing through scattering matter, including phase conjugation7 and time-reversal4. Light is scattered out of a focusing beam when an inhomogeneous medium is placed between the lens and the focal plane. Now, scientists experimentally demonstrate that scattering can be exploited to improve, rather than deteriorate, the focusing resolution of a lens by using wavefront shaping to compensate for scattering.
Physical Review Letters | 2008
Ivo Micha Vellekoop; Allard Mosk
We experimentally demonstrate increased diffuse transmission of light through strongly scattering materials. Wave front shaping is used to selectively couple light to the open transport eigenchannels, specific solutions of Maxwells equations which the sample transmits fully, resulting in an increase of up to 44% in the total angle-integrated transmission compared to the case where plane waves are incident. The results for each of several hundreds of experimental runs are in excellent quantitative agreement with random matrix theory. From our measurements we conclude that with perfectly shaped wave fronts the transmission of a disordered sample tends to a universal value of 2/3, regardless of the thickness.
Optics Communications | 2008
Ivo Micha Vellekoop; Allard Mosk
Light propagation in materials with microscopic inhomogeneities is affected by scattering. In scattering materials, such as powders, disordered metamaterials or biological tissue, multiple scattering on sub-wavelength particles makes light diffuse. Recently, we showed that it is possible to construct a wavefront that focuses through a solid, strongly scattering object. The focusing wavefront uniquely matches a certain configuration of the particles in the medium. To focus light through a turbid liquid or living tissue, it is necessary to dynamically adjust the wavefront as the particles in the medium move. Here we present three algorithms for constructing a wavefront that focuses through a scattering medium. We analyze the dynamic behavior of these algorithms and compare their sensitivity to measurement noise. The algorithms are compared both experimentally and using numerical simulations. The results are in good agreement with an intuitive model, which may be used to develop dynamic diffusion compensators with applications in, for example, light delivery in human tissue.
Optics Letters | 2010
Ivo Micha Vellekoop; Christof M. Aegerter
A major limitation of any type of microscope is the penetration depth in turbid tissue. Here, we demonstrate a fundamentally novel kind of fluorescence microscope that images through optically thick turbid layers. The microscope uses scattered light, rather than light propagating along a straight path, for imaging with subwavelength resolution. Our method uses constructive interference to focus scattered laser light through the turbid layer. Microscopic fluorescent structures behind the layer were imaged by raster scanning the focus.
Optics Express | 2008
Ivo Micha Vellekoop; E.G. Putten; Ad Lagendijk; Allard Mosk
We experimentally demonstrate the first method to focus light inside disordered photonic metamaterials. In such materials, scattering prevents light from forming a geometric focus. Instead of geometric optics, we used multi-path interference to make the scattering process itself concentrate light on a fluorescent nanoscale probe at the target position. Our method uses the fact that the disorder in a solid material is fixed in time. Therefore, even disordered light scattering is deterministic. Measurements of the probes fluorescence provided the information needed to construct a specific linear combination of hundreds of incident waves, which interfere constructively at the probe.
Applied Optics | 2008
E.G. van Putten; Ivo Micha Vellekoop; Allard Mosk
We present a method for full spatial phase and amplitude control of a laser beam using a twisted nematic LCD combined with a spatial filter. By spatial filtering we combine four neighboring pixels into one superpixel. At each superpixel we are able to independently modulate the phase and the amplitude of light. We experimentally demonstrate the independent phase and amplitude modulation using this novel technique. Our technique does not impose special requirements on the spatial light modulator and allows precise control of fields even with imperfect modulators.
Optics Express | 2015
Ivo Micha Vellekoop
Light scattering was thought to be the fundamental limitation for the depth at which optical imaging methods can retain their resolution and sensitivity. However, it was shown that light can be focused inside even the most strongly scattering objects by spatially shaping the wavefront of the incident light. This review summarizes recently developed feedback-based approaches for focusing light inside and through scattering objects.
Applied Physics Letters | 2012
Ivo Micha Vellekoop; Meng Cui; Changhuei Yang
We demonstrate a method for phase conjugating fluorescence. Our method, called reference free digital optical phase conjugation, can conjugate extremely weak, incoherent optical signals. It was used to phase conjugate fluorescent light originating from a bead covered with 0.5 mm of light-scattering tissue. The phase conjugated beam refocuses onto the bead and causes a local increase of over two orders of magnitude in the light intensity. Potential applications are in imaging, optical trapping, and targeted photochemical activation inside turbid tissue.
Nature Physics | 2015
Benjamin Judkewitz; Roarke Horstmeyer; Ivo Micha Vellekoop; Ioannis N. Papadopoulos; Changhuei Yang
Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.