Kevin Kuntze
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Kuntze.
Environmental Microbiology | 2008
Kevin Kuntze; Yoshifumi Shinoda; Housna Moutakki; Michael J. McInerney; Carsten Vogt; Hans-Hermann Richnow; Matthias Boll
In anaerobic bacteria, most aromatic growth substrates are channelled into the benzoyl-coenzyme A (CoA) degradation pathway where the aromatic ring is dearomatized and cleaved into an aliphatic thiol ester. The initial step of this pathway is catalysed by dearomatizing benzoyl-CoA reductases yielding the two electron-reduction product, cyclohexa-1,5-diene-1-carbonyl-CoA, to which water is subsequently added by a hydratase. The next two steps have so far only been studied in facultative anaerobes and comprise the oxidation of the 6-hydroxyl-group to 6-oxocyclohex-1-ene-1-carbonyl-CoA (6-OCH-CoA), the addition of water and hydrolytic ring cleavage yielding 3-hydroxypimelyl-CoA. In this work, two benzoate-induced genes from the obligately anaerobic bacteria, Geobacter metallireducens (bamA(Geo)) and Syntrophus aciditrophicus (bamA(Syn)), were heterologously expressed in Escherichia coli, purified and characterized as 6-OCH-CoA hydrolases. Both enzymes consisted of a single 43 kDa subunit. Some properties of the enzymes are presented and compared with homologues from facultative anaerobes. An alignment of the nucleotide sequences of bamA(Geo) and bamA(Syn) with the corresponding genes from facultative anaerobes identified highly conserved DNA regions, which enabled the discrimination of genes coding for 6-OCH-CoA hydrolases from those coding for related enzymes. A degenerate oligonucleotide primer pair was deduced from conserved regions and applied in polymerase chain reaction reactions. Using these primers, the expected DNA fragment of the 6-OCH-CoA hydrolase genes was specifically amplified from the DNA of nearly all known facultative and obligate anaerobes that use aromatic growth substrates. The only exception was the aromatic compound-degrading Rhodopseudomonas palustris, which uniquely uses a modified benzoyl-CoA degradation pathway. Using the oligonucleotide primers, the expected DNA fragment was also amplified in a toluene-degrading and a m-xylene-degrading enrichment culture demonstrating its potential use in less defined bacterial communities. The gene probe established in this work provides for the first time a general tool for the detection of a central functionality in aromatic compound-degrading anaerobes.
Environmental Microbiology | 2011
Claudia Löffler; Kevin Kuntze; José Ramos Vazquez; Agnieszka Rugor; Johannes W. Kung; Annette Böttcher; Matthias Boll
Benzoyl-coenzyme A (CoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds and catalyse the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-dienoyl-1-carboxyl-CoA. Class I BCRs are ATP-dependent FeS enzymes, whereas class II BCRs are supposed to be ATP-independent and contain W, FeS clusters, and most probably selenocysteine. The active site components of a putative eight subunit class II BCR, BamBCDEFGHI, were recently characterized in Geobacter metallireducens. In this organism bamB was identified as structural gene for the W-containing active site subunit; bamF was predicted to code for a selenocysteine containing electron transfer subunit. In this work the occurrence and expression of BCRs in a number of anaerobic, aromatic compound degrading model microorganisms was investigated with a focus on the BamB and BamF components. Benzoate-induced class II BCR in vitro activities were determined in the soluble protein fraction in all obligately anaerobic bacteria tested. Where applicable, the results were in agreement with Western blot analysis using BamB targeting antibodies. By establishing a specific bamB targeting PCR assay, bamB homologues were identified in all tested obligately anaerobic bacteria with the capacity to degrade aromatic compounds; a number of bamB sequences from Gram-negative/positive sulfate-reducing bacteria were newly sequenced. In several organisms at least two bamB paralogues per genome were identified; however, in nearly all cases only one of them was transcribed during growth on an aromatic substrate. These benzoate-induced bamB genes are proposed to code for the active site subunit of class II BCRs; the major part of them group into a phylogenetic subcluster within the bamB homologues. Results from in silico analysis suggested that all class II BCRs contain selenocysteine in the BamF, and in many cases also in the BamE subunit. The results obtained indicate that the distribution of the two classes of BCRs in anaerobic bacteria appears to be strictly ruled by the available free energy from the oxidation of the aromatic carbon source rather than by phylogenetic relationships.
Molecular Microbiology | 2011
Kevin Kuntze; Patrick Kiefer; Sven Baumann; Jana Seifert; Martin von Bergen; Julia A. Vorholt; Matthias Boll
Organohalides are environmentally relevant compounds that can be degraded by aerobic and anaerobic microorganisms. The denitrifying Thauera chlorobenzoica is capable of degrading halobenzoates as sole carbon and energy source under anaerobic conditions. LC‐MS/MS‐based coenzyme A (CoA) thioester analysis revealed that 3‐chloro‐ or 3‐bromobenzoate were preferentially metabolized via non‐halogenated CoA‐ester intermediates of the benzoyl‐CoA degradation pathway. In contrast, 3‐fluorobenzoate, which does not support growth, was converted to dearomatized fluorinated CoA ester dead‐end products. Extracts from cells grown on 3‐chloro‐/3‐bromobenzoate catalysed the Ti(III)‐citrate‐ and ATP‐dependent reductive dehalogenation of 3‐chloro/3‐bromobenzoyl‐CoA to benzoyl‐CoA, whereas 3‐fluorobenzoyl‐CoA was converted to a fluorinated cyclic dienoyl‐CoA compound. The reductive dehalogenation reactions were identified as previously unknown activities of ATP‐dependent class I benzoyl‐CoA reductases (BCR) present in all facultatively anaerobic, aromatic compound degrading bacteria. A two‐step dearomatization/H‐halide elimination mechanism is proposed. A halobenzoate‐specific carboxylic acid CoA ligase was characterized in T. chlorobenzoica; however, no such enzyme is present in Thauera aromatica, which cannot grow on halobenzoates. In conclusion, it appears that the presence of a halobenzoate‐specific carboxylic acid CoA ligase rather than a specific reductive dehalogenase governs whether an aromatic compound degrading anaerobe is capable of metabolizing halobenzoates.
Applied and Environmental Microbiology | 2011
Kevin Kuntze; Carsten Vogt; Hans-Hermann Richnow; Matthias Boll
ABSTRACT To explore the reliability of assays that detect aromatic-compound-degrading anaerobes, a combination of three functional-gene-targeting assays was applied to microcosms from benzene-contaminated aquifers. Results of the assays were consistent and suggest that species related to the genera Azoarcus and Geobacter dominated benzene degradation at the individual sites.
Current Opinion in Biotechnology | 2016
Ivonne Nijenhuis; Kevin Kuntze
Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation.
Journal of Molecular Microbiology and Biotechnology | 2016
Frederick von Netzer; Kevin Kuntze; Carsten Vogt; Hans H. Richnow; Matthias Boll; Tillmann Lueders
Anaerobic degradation is a key process in many environments either naturally or anthropogenically exposed to petroleum hydrocarbons. Considerable advances into the biochemistry and physiology of selected anaerobic degraders have been achieved over the last decades, especially for the degradation of aromatic hydrocarbons. However, researchers have only recently begun to explore the ecology of complex anaerobic hydrocarbon degrader communities directly in their natural habitats, as well as in complex laboratory systems using tools of molecular biology. These approaches have mainly been facilitated by the establishment of a suite of targeted marker gene assays, allowing for rapid and directed insights into the diversity as well as the identity of intrinsic degrader populations and degradation potentials established at hydrocarbon-impacted sites. These are based on genes encoding either peripheral or central key enzymes in aromatic compound breakdown, such as fumarate-adding benzylsuccinate synthases or dearomatizing aryl-coenzyme A reductases, or on aromatic ring-cleaving hydrolases. Here, we review recent advances in this field, explain the different detection methodologies applied, and discuss how the detection of site-specific catabolic gene markers has improved the understanding of processes at contaminated sites. Functional marker gene-based strategies may be vital for the development of a more elaborate population-based assessment and prediction of aromatic degradation potentials in hydrocarbon-impacted environments.
Applied and Environmental Microbiology | 2010
Javier F. Juárez; María Teresa Zamarro; María J. López Barragán; Blas Blázquez; Matthias Boll; Kevin Kuntze; José Luis Dader García; Eduardo Díaz; Manuel Carmona
ABSTRACT Regulation of aromatic degradation in obligate anaerobes was studied in the Fe(III)-respiring model organism Geobacter metallireducens GS-15. A two-component system and a σ54-dependent promoter were identified that are both involved in the regulation of the gene coding for benzoate-coenzyme A ligase, catalyzing the initial step of benzoate degradation.
Journal of Bacteriology | 2013
Steffen Kümmel; Kevin Kuntze; Carsten Vogt; Matthias Boll; Johann Heider; Hans H. Richnow
We studied the benzylsuccinate synthase (Bss) reaction mechanism with respect to the hydrogen-carbon bond cleavage at the methyl group of toluene by using different stable isotope tools. Λ values (slopes of linear regression curves for carbon and hydrogen discrimination) for two-dimensional compound-specific stable isotope analysis (2D-CSIA) of toluene activation by Bss-containing cell extracts (in vitro studies) were found to be similar to previously reported data from analogous experiments with whole cells (in vivo studies), proving that Λ values generated by whole cells are caused by Bss catalysis. The Bss enzymes of facultative anaerobic bacteria produced smaller Λ values than those of obligate anaerobes. In addition, a partial exchange of a single deuterium atom in benzylsuccinate with hydrogen was observed in experiments with deuterium-labeled toluene. In this study, the Bss enzymes of the tested facultative anaerobes showed 3- to 8-fold higher exchange probabilities than those for the enzymes of the tested obligate anaerobic bacteria. The phylogeny of the Bss variants, determined by sequence analyses of BssA, the gene product corresponding to the α subunit of Bss, correlated with the observed differences in Λ values and hydrogen exchange probabilities. In conclusion, our results suggest subtle differences in the reaction mechanisms of Bss isoenzymes of facultative and obligate anaerobes and show that the putative isoenzymes can be differentiated by 2D-CSIA.
Environmental Science & Technology | 2016
Kevin Kuntze; Anna Kozell; Hans H. Richnow; Ludwik Halicz; Ivonne Nijenhuis; Faina Gelman
The present study investigated dual carbon-bromine isotope fractionation of the common groundwater contaminant ethylene dibromide (EDB) during chemical and biological transformations, including aerobic and anaerobic biodegradation, alkaline hydrolysis, Fenton-like degradation, debromination by Zn(0) and reduced corrinoids. Significantly different correlation of carbon and bromine isotope fractionation (ΛC/Br) was observed not only for the processes following different transformation pathways, but also for abiotic and biotic processes with, the presumed, same formal chemical degradation mechanism. The studied processes resulted in a wide range of ΛC/Br values: ΛC/Br = 30.1 was observed for hydrolysis of EDB in alkaline solution; ΛC/Br between 4.2 and 5.3 were determined for dibromoelimination pathway with reduced corrinoids and Zn(0) particles; EDB biodegradation by Ancylobacter aquaticus and Sulfurospirillum multivorans resulted in ΛC/Br = 10.7 and 2.4, respectively; Fenton-like degradation resulted in carbon isotope fractionation only, leading to ΛC/Br ∞. Calculated carbon apparent kinetic isotope effects ((13)C-AKIE) fell with 1.005 to 1.035 within expected ranges according to the theoretical KIE, however, biotic transformations resulted in weaker carbon isotope effects than respective abiotic transformations. Relatively large bromine isotope effects with (81)Br-AKIE of 1.0012-1.002 and 1.0021-1.004 were observed for nucleophilic substitution and dibromoelimination, respectively, and reveal so far underestimated strong bromine isotope effects.
Environmental Science and Pollution Research | 2016
Diana Puigserver; Jofre Herrero; Mònica Torres; Amparo Cortés; Ivonne Nijenhuis; Kevin Kuntze; Beth L. Parker; José M. Carmona
In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).