Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivorlyne P. Greene is active.

Publication


Featured researches published by Ivorlyne P. Greene.


Journal of Virology | 2005

Effect of Alternating Passage on Adaptation of Sindbis Virus to Vertebrate and Invertebrate Cells

Ivorlyne P. Greene; Eryu Wang; Eleanor R. Deardorff; Rania S. Milleron; Esteban Domingo; Scott C. Weaver

ABSTRACT Mosquito-borne alphaviruses, which replicate alternately and obligately in mosquitoes and vertebrates, appear to experience lower rates of evolution than do many RNA viruses that replicate solely in vertebrates. This genetic stability is hypothesized to result from the alternating host cycle, which constrains evolution by imposing compromise fitness solutions in each host. To test this hypothesis, Sindbis virus was passaged serially, either in one cell type to eliminate host alteration or alternately between vertebrate (BHK) and mosquito (C6/36) cells. Following 20 to 50 serial passages, mutations were identified and changes in fitness were assessed using competition assays against genetically marked, surrogate parent viruses. Specialized viruses passaged in a single cell exhibited more mutations and amino acid changes per passage than those passaged alternately. Single host-adapted viruses exhibited fitness gains in the cells in which they specialized but fitness losses in the bypassed cell type. Most but not all viruses passaged alternately experienced lesser fitness gains than specialized viruses, with fewer mutations per passage. Clonal populations derived from alternately passaged viruses also exhibited adaptation to both cell lines, indicating that polymorphic populations are not required for simultaneous fitness gains in vertebrate and mosquito cells. Nearly all passaged viruses acquired Arg or Lys substitutions in the E2 envelope glycoprotein, but enhanced binding was only detected for BHK cells. These results support the hypothesis that arbovirus evolution may be constrained by alternating host transmission cycles, but they indicate a surprising ability for simultaneous adaptation to highly divergent cell types by combinations of mutations in single genomes.


Journal of Virology | 2003

Recombinant Sindbis/Venezuelan Equine Encephalitis Virus Is Highly Attenuated and Immunogenic

Slobodan Paessler; Rafik Fayzulin; Michael Anishchenko; Ivorlyne P. Greene; Scott C. Weaver; Ilya Frolov

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.


Emerging Infectious Diseases | 2004

Endemic Venezuelan Equine Encephalitis in Northern Peru

Patricia V. Aguilar; Ivorlyne P. Greene; Lark L. Coffey; Gladys Medina; Abelardo C. Moncayo; Michael Anishchenko; George V. Ludwig; Michael J. Turell; Monica L. O’Guinn; John S. Lee; Robert B. Tesh; Douglas M. Watts; Kevin L. Russell; Christine L. Hice; Stephen P. Yanoviak; Amy C. Morrison; Terry A. Klein; David J. Dohm; Hilda Guzman; Amelia Travassos da Rosa; Carolina Guevara; Tadeusz J. Kochel; James G. Olson; Cesar Cabezas; Scott C. Weaver

Since Venezuelan equine encephalitis virus (VEEV) was isolated in Peru in 1942, >70 isolates have been obtained from mosquitoes, humans, and sylvatic mammals primarily in the Amazon region. To investigate genetic relationships among the Peru VEEV isolates and between the Peru isolates and other VEEV strains, a fragment of the PE2 gene was amplified and analyzed by single-stranded conformation polymorphism. Representatives of seven genotypes underwent sequencing and phylogenetic analysis. The results identified four VEE complex lineages that cocirculate in the Amazon region: subtypes ID (Panama and Colombia/Venezuela genotypes), IIIC, and a new, proposed subtype IIID, which was isolated from a febrile human, mosquitoes, and spiny rats. Both ID lineages and the IIID subtype are associated with febrile human illness. Most of the subtype ID isolates belonged to the Panama genotype, but the Colombia/Venezuela genotype, which is phylogenetically related to epizootic strains, also continues to circulate in the Amazon basin.


Journal of Virology | 2004

Generation and Characterization of Closely Related Epizootic and Enzootic Infectious cDNA Clones for Studying Interferon Sensitivity and Emergence Mechanisms of Venezuelan Equine Encephalitis Virus

Michael Anishchenko; Slobodan Paessler; Ivorlyne P. Greene; Patricia V. Aguilar; Anne Sophie Carrara; Scott C. Weaver

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is a reemerging pathogen and a continuing threat to humans and equines in the Americas. Identification of the genetic determinants that enable epizootic VEEV strains to arise and exploit equines as amplification hosts to cause widespread human disease is pivotal to understanding VEE emergence. The sensitivity to murine alpha/beta interferon-mediated antiviral activity was previously correlated to the epizootic phenotype of several VEEV strains. Infectious cDNA clones were generated from an epizootic subtype IC VEEV strain (SH3) isolated during the 1992 Venezuelan outbreak and a closely related enzootic, sympatric subtype ID strain (ZPC738). These VEEV strains had low-cell-culture-passage histories and differed by only 12 amino acids in the nonstructural and structural proteins. Rescued viruses showed similar growth kinetics to their parent viruses in several cell lines, and murine infections resulted in comparable viremia and disease. Unlike what was found in other studies of epizootic and enzootic VEEV strains, the sensitivities to murine alpha/beta interferon did not differ appreciably between these epizootic versus enzootic strains, calling into question the reliability of interferon sensitivity as a marker of epizootic potential.


Journal of Virology | 2005

Envelope Glycoprotein Mutations Mediate Equine Amplification and Virulence of Epizootic Venezuelan Equine Encephalitis Virus

Ivorlyne P. Greene; Slobodan Paessler; Laura Austgen; Michael Anishchenko; Aaron C. Brault; Richard A. Bowen; Scott C. Weaver

ABSTRACT Epidemics of Venezuelan equine encephalitis (VEE) result from high-titer equine viremia of IAB and IC subtype viruses that mediate increased mosquito transmission and spillover to humans. Previous genetic studies suggest that mutations in the E2 envelope glycoprotein allow relatively viremia-incompetent, enzootic subtype ID strains to adapt for equine replication, leading to VEE emergence. To test this hypothesis directly, chimeric VEEV strains containing the genetic backbone of enzootic subtype ID strains and the partial envelope glycoprotein genes of epizootic subtype IC and IAB strains, as well as reciprocal chimeras, were used for experimental infections of horses. Insertion of envelope genes from two different, closely related enzootic subtype ID strains into the epizootic backbones resulted in attenuation, demonstrating that the epizootic envelope genes are necessary for the equine-virulent and viremia-competent phenotypes. The partial epizootic envelope genes introduced into an enzootic ID backbone were sufficient to generate the virulent, viremia-competent equine phenotype. These results indicate that a small number of envelope gene mutations can generate an equine amplification-competent, epizootic VEEV from an enzootic progenitor and underscore the limitations of small animal models for evaluating and predicting the epizootic phenotype.


Archives of virology. Supplementum | 2004

Genetic determinants of Venezuelan equine encephalitis emergence.

Scott C. Weaver; Michael Anishchenko; Richard A. Bowen; Aaron C. Brault; Jose G. Estrada-Franco; Zoraida Fernandez; Ivorlyne P. Greene; Diana Ortiz; Slobodan Paessler; Ann M. Powers

Following a period of inactivity from 1973-1991, Venezuelan equine encephalitis (VEE) reemerged during the past decade in South America and Mexico. Experimental studies of VEE virus (VEEV) infection of horses with virus strains isolated during these outbreaks have revealed considerable variation in the ability of equine-virulent, epizootic strains to exploit horses as efficient amplification hosts. Subtype IC strains from recent outbreaks in Venezuela and Colombia amplify efficiently in equines, with a correlation between maximum viremia titers and the extent of the outbreak from which the virus strain was isolated. Studies of enzootic VEEV strains that are believed to represent progenitors of the epizootic subtypes support the hypothesis that adaptation to efficient replication in equines is a major determinant of emergence and the ability of VEEV to spread geographically. Correlations between the ability of enzootic and epizootic VEEV strains to infect abundant, equiphilic mosquitoes, and the location and extent of these outbreaks, also suggest that specific adaptation to Ochlerotatus taeniorhynchus mosquitoes is a determinant of some but not all emergence events. Genetic studies imply that mutations in the E2 envelope glycoprotein gene are major determinants of adaptation to both equines and mosquito vectors.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection

Ivorlyne P. Greene; Eun Young Lee; Natalie A. Prow; Brownhilda Ngwang; Diane E. Griffin

Neuronal cell death during fatal acute viral encephalomyelitis can result from damage caused by virus replication, glutamate excitotoxicity, and the immune response. A neurovirulent strain of the alphavirus Sindbis virus (NSV) causes fatal encephalomyelitis associated with motor neuron death in adult C57BL/6 mice that can be prevented by treatment with the prototypic noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor antagonist GYKI 52466 [Nargi-Aizenman J, et al. (2004) Ann Neurol 55:541–549]. To determine the mechanism of protection, NSV-infected mice were treated with 7-acetyl-5-(4-aminophenyl)-8(R)-methyl-8,9-dihydro-7H-1,3-dioxolo-(4,5-h)-benzodiazepine (talampanel), a potent, orally available member of the 2,3 benzodiazepine class of noncompetitive AMPA glutamate receptor antagonists. Talampanel-treated mice were protected from NSV-induced paralysis and death. Examination of the brain during infection showed significantly less mononuclear cell infiltration and no increase in astrocyte expression of glial fibrillary acidic protein in treated mice compared with untreated mice. Lack of CNS inflammation was attributable to failure of treated mice to induce activation and proliferation of lymphocytes in secondary lymphoid tissue in response to infection. Antibody responses to NSV were also suppressed by talampanel treatment, and virus clearance was delayed. These studies reveal a previously unrecognized effect of AMPA receptor antagonists on the immune response and suggest that prevention of immune-mediated damage, in addition to inhibition of excitotoxicity, is a mechanism by which these drugs protect from death of motor neurons caused by viral infection.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis

Kirsten A. Kulcsar; Victoria K. Baxter; Ivorlyne P. Greene; Diane E. Griffin

Significance Mosquito-borne alphaviruses are important causes of epidemic encephalomyelitis. The immune response plays an important role in disease; however, immune-mediated mechanisms of pathogenesis and regulation are not understood. In this study, we determined that a pathogenic Th17 response occurs during fatal alphavirus encephalitis. Furthermore, the regulatory cytokine, interleukin 10, plays an important role in modulating the pathogenic Th17 response. In the absence of interleukin 10, the Th17 response is increased in magnitude and displays a more pathogenic phenotype, resulting in accelerated disease progression. These findings are important for understanding the pathogenesis of virus infections in the central nervous system and the identification of therapeutic interventions that focus on immune modulation in the central nervous system. Mosquito-borne alphaviruses are important causes of epidemic encephalomyelitis. Neuronal cell death during fatal alphavirus encephalomyelitis is immune-mediated; however, the types of cells involved and their regulation have not been determined. We show that the virus-induced inflammatory response was accompanied by production of the regulatory cytokine IL-10, and in the absence of IL-10, paralytic disease occurred earlier and mice died faster. To determine the reason for accelerated disease in the absence of IL-10, immune responses in the CNS of IL-10−/− and wild-type (WT) mice were compared. There were no differences in the amounts of brain inflammation or peak virus replication; however, IL-10−/− animals had accelerated and increased infiltration of CD4+IL-17A+ and CD4+IL-17A+IFNγ+ cells compared with WT animals. Th17 cells infiltrating the brain demonstrated a pathogenic phenotype with the expression of the transcription factor, Tbet, and the production of granzyme B, IL-22, and GM-CSF, with greater production of GM-CSF in IL-10−/− mice. Therefore, in fatal alphavirus encephalomyelitis, pathogenic Th17 cells enter the CNS at the onset of neurologic disease and, in the absence of IL-10, appear earlier, develop into Th1/Th17 cells more often, and have greater production of GM-CSF. This study demonstrates a role for pathogenic Th17 cells in fatal viral encephalitis.


Journal of Clinical Microbiology | 2006

Reverse Transcription-PCR-Enzyme-Linked Immunosorbent Assay for Rapid Detection and Differentiation of Alphavirus Infections

Eryu Wang; Slobodan Paessler; Patricia V. Aguilar; Anne-Sophie Carrara; Haolin Ni; Ivorlyne P. Greene; Scott C. Weaver

ABSTRACT Due to the lack of a rapid, simple, and inexpensive assay for detecting alphavirus infections, we combined a reverse transcription-PCR with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) to identify human pathogenic alphaviruses that are endemic in the New World. By combining the sensitivity of PCR, the detection simplicity of ELISA, and the specificities of DNA probes, this method rapidly detected and differentiated closely related species and subtypes of several medically important alphaviruses. After an amplification using RT-PCR with primers targeting conserved sequences in the nonstructural protein 1 gene, sequence-specific, biotin-labeled probes targeted against Venezuelan, eastern, and western equine encephalitis or Mayaro virus genes were used for the detection of amplicons using ELISA. The assay is simple, fast, and easy to perform in an ordinary diagnostic laboratory or clinical setting. Nucleic acid derived from cell cultures infected with several alphaviruses, clinical specimens, and mosquito pools as well as frozen and paraffin-embedded animal tissues were detected and identified within 6 to 7 h in a sensitive and specific manner.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation

Michael Anishchenko; Richard A. Bowen; Slobodan Paessler; Laura Austgen; Ivorlyne P. Greene; Scott C. Weaver

Collaboration


Dive into the Ivorlyne P. Greene's collaboration.

Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Michael Anishchenko

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Slobodan Paessler

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Aaron C. Brault

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Patricia V. Aguilar

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eryu Wang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ilya Frolov

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Laura Austgen

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge