Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Anishchenko is active.

Publication


Featured researches published by Michael Anishchenko.


Journal of Virology | 2003

Recombinant Sindbis/Venezuelan Equine Encephalitis Virus Is Highly Attenuated and Immunogenic

Slobodan Paessler; Rafik Fayzulin; Michael Anishchenko; Ivorlyne P. Greene; Scott C. Weaver; Ilya Frolov

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.


Journal of Virology | 2005

Variation in Interferon Sensitivity and Induction among Strains of Eastern Equine Encephalitis Virus

Patricia V. Aguilar; Slobodan Paessler; Anne Sophie Carrara; Samuel Baron; Joyce Poast; Eryu Wang; Abelardo C. Moncayo; Michael Anishchenko; Douglas M. Watts; Robert B. Tesh; Scott C. Weaver

ABSTRACT Eastern equine encephalitis virus (EEEV) causes human encephalitis in North America (NA), but in South America (SA) it has rarely been associated with human disease, suggesting that SA strains are less virulent. To evaluate the hypothesis that this virulence difference is due to a greater ability of NA strains to evade innate immunity, we compared replication of NA and SA strains in Vero cells pretreated with interferon (IFN). Human IFN-α, -β, and -γ generally exhibited less effect on replication of NA than SA strains, supporting this hypothesis. In the murine model, no consistent difference in IFN induction was observed between NA and SA strains. After infection with most EEEV strains, higher viremia levels and shorter survival times were observed in mice deficient in IFN-α/β receptors than in wild-type mice, suggesting that IFN-α/β is important in controlling replication. In contrast, IFN-γ receptor-deficient mice infected with NA and SA strains had similar viremia levels and mortality rates to those of wild-type mice, suggesting that IFN-γ does not play a major role in murine protection. Mice pretreated with poly(I-C), a nonspecific IFN inducer, exhibited dose-dependent protection against fatal eastern equine encephalitis, further evidence that IFN is important in controlling disease. Overall, our in vivo results did not support the hypothesis that NA strains are more virulent in humans due to their greater ability to counteract the IFN response. However, further studies using a better model of human disease are needed to confirm the results of differential human IFN sensitivity obtained in our in vitro experiments.


Emerging Infectious Diseases | 2004

Endemic Venezuelan Equine Encephalitis in Northern Peru

Patricia V. Aguilar; Ivorlyne P. Greene; Lark L. Coffey; Gladys Medina; Abelardo C. Moncayo; Michael Anishchenko; George V. Ludwig; Michael J. Turell; Monica L. O’Guinn; John S. Lee; Robert B. Tesh; Douglas M. Watts; Kevin L. Russell; Christine L. Hice; Stephen P. Yanoviak; Amy C. Morrison; Terry A. Klein; David J. Dohm; Hilda Guzman; Amelia Travassos da Rosa; Carolina Guevara; Tadeusz J. Kochel; James G. Olson; Cesar Cabezas; Scott C. Weaver

Since Venezuelan equine encephalitis virus (VEEV) was isolated in Peru in 1942, >70 isolates have been obtained from mosquitoes, humans, and sylvatic mammals primarily in the Amazon region. To investigate genetic relationships among the Peru VEEV isolates and between the Peru isolates and other VEEV strains, a fragment of the PE2 gene was amplified and analyzed by single-stranded conformation polymorphism. Representatives of seven genotypes underwent sequencing and phylogenetic analysis. The results identified four VEE complex lineages that cocirculate in the Amazon region: subtypes ID (Panama and Colombia/Venezuela genotypes), IIIC, and a new, proposed subtype IIID, which was isolated from a febrile human, mosquitoes, and spiny rats. Both ID lineages and the IIID subtype are associated with febrile human illness. Most of the subtype ID isolates belonged to the Panama genotype, but the Colombia/Venezuela genotype, which is phylogenetically related to epizootic strains, also continues to circulate in the Amazon basin.


Journal of Virology | 2006

Replication and Clearance of Venezuelan Equine Encephalitis Virus from the Brains of Animals Vaccinated with Chimeric SIN/VEE Viruses

Slobodan Paessler; Haolin Ni; Olga Petrakova; Rafik Fayzulin; Nadezhda E. Yun; Michael Anishchenko; Scott C. Weaver; Ilya Frolov

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.


Journal of Virology | 2008

Structural and Nonstructural Protein Genome Regions of Eastern Equine Encephalitis Virus Are Determinants of Interferon Sensitivity and Murine Virulence

Patricia V. Aguilar; A. Paige Adams; Eryu Wang; Wenli Kang; Anne Sophie Carrara; Michael Anishchenko; Ilya Frolov; Scott C. Weaver

ABSTRACT Eastern equine encephalitis virus (EEEV) causes sporadic epidemics of human and equine disease in North America, but South American strains have seldom been associated with human neurologic disease or mortality, despite serological evidence of infection. In mice, most North American and South American strains of EEEV produce neurologic disease that resembles that associated with human and equine infections. We identified a South American strain that is unable to replicate efficiently in the brain or cause fatal disease in mice yet produces 10-fold higher viremia than virulent EEEV strains. The avirulent South American strain was also sensitive to human interferon (IFN)-α, -β, and -γ, like most South American strains, in contrast to North American strains that were highly resistant. To identify genes associated with IFN sensitivity and virulence, infectious cDNA clones of a virulent North American strain and the avirulent South American strain were constructed. Two reciprocal chimeric viruses containing swapped structural and nonstructural protein gene regions of the North American and South American strains were also constructed and found to replicate efficiently in vitro. Both chimeras produced fatal disease in mice, similar to that caused by the virulent North American strain. Both chimeric viruses also exhibited intermediate sensitivity to human IFN-α, -β, and -γ compared to that of the North American and South American strains. Virulence 50% lethal dose assays and serial sacrifice experiments further demonstrated that both structural and nonstructural proteins are important contributors to neurovirulence and viral tissue tropism. Together, the results of this study emphasize the complex and important influences of structural and nonstructural protein gene regions on EEEV virulence.


Journal of Virology | 2004

Generation and Characterization of Closely Related Epizootic and Enzootic Infectious cDNA Clones for Studying Interferon Sensitivity and Emergence Mechanisms of Venezuelan Equine Encephalitis Virus

Michael Anishchenko; Slobodan Paessler; Ivorlyne P. Greene; Patricia V. Aguilar; Anne Sophie Carrara; Scott C. Weaver

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is a reemerging pathogen and a continuing threat to humans and equines in the Americas. Identification of the genetic determinants that enable epizootic VEEV strains to arise and exploit equines as amplification hosts to cause widespread human disease is pivotal to understanding VEE emergence. The sensitivity to murine alpha/beta interferon-mediated antiviral activity was previously correlated to the epizootic phenotype of several VEEV strains. Infectious cDNA clones were generated from an epizootic subtype IC VEEV strain (SH3) isolated during the 1992 Venezuelan outbreak and a closely related enzootic, sympatric subtype ID strain (ZPC738). These VEEV strains had low-cell-culture-passage histories and differed by only 12 amino acids in the nonstructural and structural proteins. Rescued viruses showed similar growth kinetics to their parent viruses in several cell lines, and murine infections resulted in comparable viremia and disease. Unlike what was found in other studies of epizootic and enzootic VEEV strains, the sensitivities to murine alpha/beta interferon did not differ appreciably between these epizootic versus enzootic strains, calling into question the reliability of interferon sensitivity as a marker of epizootic potential.


Journal of Virology | 2005

Envelope Glycoprotein Mutations Mediate Equine Amplification and Virulence of Epizootic Venezuelan Equine Encephalitis Virus

Ivorlyne P. Greene; Slobodan Paessler; Laura Austgen; Michael Anishchenko; Aaron C. Brault; Richard A. Bowen; Scott C. Weaver

ABSTRACT Epidemics of Venezuelan equine encephalitis (VEE) result from high-titer equine viremia of IAB and IC subtype viruses that mediate increased mosquito transmission and spillover to humans. Previous genetic studies suggest that mutations in the E2 envelope glycoprotein allow relatively viremia-incompetent, enzootic subtype ID strains to adapt for equine replication, leading to VEE emergence. To test this hypothesis directly, chimeric VEEV strains containing the genetic backbone of enzootic subtype ID strains and the partial envelope glycoprotein genes of epizootic subtype IC and IAB strains, as well as reciprocal chimeras, were used for experimental infections of horses. Insertion of envelope genes from two different, closely related enzootic subtype ID strains into the epizootic backbones resulted in attenuation, demonstrating that the epizootic envelope genes are necessary for the equine-virulent and viremia-competent phenotypes. The partial epizootic envelope genes introduced into an enzootic ID backbone were sufficient to generate the virulent, viremia-competent equine phenotype. These results indicate that a small number of envelope gene mutations can generate an equine amplification-competent, epizootic VEEV from an enzootic progenitor and underscore the limitations of small animal models for evaluating and predicting the epizootic phenotype.


Archives of virology. Supplementum | 2004

Genetic determinants of Venezuelan equine encephalitis emergence.

Scott C. Weaver; Michael Anishchenko; Richard A. Bowen; Aaron C. Brault; Jose G. Estrada-Franco; Zoraida Fernandez; Ivorlyne P. Greene; Diana Ortiz; Slobodan Paessler; Ann M. Powers

Following a period of inactivity from 1973-1991, Venezuelan equine encephalitis (VEE) reemerged during the past decade in South America and Mexico. Experimental studies of VEE virus (VEEV) infection of horses with virus strains isolated during these outbreaks have revealed considerable variation in the ability of equine-virulent, epizootic strains to exploit horses as efficient amplification hosts. Subtype IC strains from recent outbreaks in Venezuela and Colombia amplify efficiently in equines, with a correlation between maximum viremia titers and the extent of the outbreak from which the virus strain was isolated. Studies of enzootic VEEV strains that are believed to represent progenitors of the epizootic subtypes support the hypothesis that adaptation to efficient replication in equines is a major determinant of emergence and the ability of VEEV to spread geographically. Correlations between the ability of enzootic and epizootic VEEV strains to infect abundant, equiphilic mosquitoes, and the location and extent of these outbreaks, also suggest that specific adaptation to Ochlerotatus taeniorhynchus mosquitoes is a determinant of some but not all emergence events. Genetic studies imply that mutations in the E2 envelope glycoprotein gene are major determinants of adaptation to both equines and mosquito vectors.


The Journal of Infectious Diseases | 2004

The Hamster as an Animal Model for Eastern Equine Encephalitis—and Its Use in Studies of Virus Entrance into the Brain

Slobodan Paessler; Patricia V. Aguilar; Michael Anishchenko; Hui Qun Wang; Judith F. Aronson; Gerald A. Campbell; Ann Sophie Cararra; Scott C. Weaver

Eastern equine encephalitis virus (EEEV) produces the most severe human arboviral diseases in the United States, with mortality rates of 30%-70%. Vasculitis associated with microhemorrhages in the brain dominates the pathological picture in fatal human eastern equine encephalitis, and neuronal cell death is detectable during the late stage of the disease. We describe use of the golden hamster to study EEEV-induced acute vasculitis and encephalitis. In hamsters, EEEV replicates in visceral organs, produces viremia, and penetrates the brain. The pathological manifestations and antigen distribution in the brain of a hamster are similar to those described in human cases of EEEV.


Emerging Infectious Diseases | 2005

Venezuelan equine encephalitis virus infection of spiny rats.

Anne Sophie Carrara; Marta Gonzales; Cristina Ferro; Margarita Tamayo; Judith F. Aronson; Slobodan Paessler; Michael Anishchenko; Jorge Boshell; Scott C. Weaver

Enzootic strains of Venezuelan equine encephalitis virus (VEEV) circulate in forested habitats of Mexico, Central, and South America, and spiny rats (Proechimys spp.) are believed to be the principal reservoir hosts in several foci. To better understand the host-pathogen interactions and resistance to disease characteristic of many reservoir hosts, we performed experimental infections of F1 progeny from Proechimys chrysaeolus collected at a Colombian enzootic VEEV focus using sympatric and allopatric virus strains. All animals became viremic with a mean peak titer of 3.3 log10 PFU/mL, and all seroconverted with antibody titers from 1:20 to 1:640, which persisted up to 15 months. No signs of disease were observed, including after intracerebral injections. The lack of detectable disease and limited histopathologic lesions in these animals contrast dramatically with the severe disease and histopathologic findings observed in other laboratory rodents and humans, and support their role as reservoir hosts with a long-term coevolutionary relationship to VEEV.

Collaboration


Dive into the Michael Anishchenko's collaboration.

Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Slobodan Paessler

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Aaron C. Brault

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ivorlyne P. Greene

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia V. Aguilar

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Sophie Carrara

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ilya Frolov

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Nisha K. Duggal

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge