Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iwa Antonow-Schlorke is active.

Publication


Featured researches published by Iwa Antonow-Schlorke.


The Journal of Physiology | 2003

Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain

Iwa Antonow-Schlorke; Matthias Schwab; Cun Li; Peter W. Nathanielsz

Glucocorticoids have been used for 30 years to accelerate fetal lung maturation in human pregnancy at risk of preterm delivery. Exposure to inappropriate levels of steroid, however, leads to altered maturation of the cardiovascular, metabolic and central nervous systems. The effects of betamethasone on neuronal development and function were determined in the fetal baboon brain by examination of cytoskeletal microtubule associated proteins (MAPs) and the presynaptic marker protein synaptophysin. At 0.73 gestation, commencing 28 weeks of gestation, pregnant baboons received four doses of saline (n= 8) or 87.5 µg (kg body weight)−1 betamethasone i.m. (n= 7) 12 h apart. This dose is equivalent to 12 mg betamethasone administered daily over two consecutive days to a 70 kg woman. Baboons underwent Caesarean section 12 h after the last injection. Paraffin sections of the fetal neocortex and the underlying white matter were labelled immunohistochemically against MAP1B, MAP2abc, MAP2ab and synaptophysin and stained histochemically with hematoxylin‐eosin and silver. Tissue staining was quantified morphometrically. Betamethasone exposure resulted in decreased immunoreactivity (IR) of MAP1B by 34.3 % and MAP2abc by 34.1 % (P < 0.05). Loss of MAP2 IR was due to loss of IR of the juvenile isoform MAP2c (P < 0.05). MAP1B and MAP2c are involved in neuritogenesis and neuronal plasticity. Synaptophysin IR was reduced by 51.8 % (P < 0.01). These changes might reflect functional neuronal disturbances because they were not accompanied by an alteration of the density of neurofibrils or neuronal necrosis. These results are in agreement with earlier findings of alterations of cytoskeletal proteins and presynaptic terminals in the fetal sheep brain after betamethasone infusion directly to the fetus and support a common effect of inappropriate fetal exposure to glucocorticoids on neuronal cytoskeleton and synapses in mammalian species.


Behavioural Brain Research | 2005

Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms.

Gerlinde A. Metz; Iwa Antonow-Schlorke; Otto W. Witte

Initial functional impairments after cerebral ischemia often improve considerably during the early period after the insult. Although pathological changes associated with post-lesion improvements have been widely investigated, it has not been resolved whether behavioral improvement represents true restoration of function (recovery) or development of new strategies (compensation). This study investigated whether early motor improvements after focal cerebral ischemia reflect recovery or compensation. Adult female Wistar rats were trained to retrieve food pellets in a skilled reaching task prior to receiving a unilateral cortical infarction induced by photothrombosis in forelimb motor cortex. Animals were continuously tested in the reaching task up to 3 weeks after lesion. The end point measures revealed that reaching success rates remained at pre-lesion levels, however, qualitative analysis of reaching movements indicated permanent changes in forelimb movement patterns. Similar observations were made in a skilled walking task and a test for forelimb asymmetry. These data indicate that lesion animals adopted alternative movement strategies in order to successfully perform the tasks. The changes in postoperative performance were compared to anatomical data in individual animals. The finding that reaching success was not related to lesion size supports the idea that the degree of adaptive behavior after cortical ischemia depends on plastic properties of the remaining intact tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability

Iwa Antonow-Schlorke; Matthias Schwab; Laura A. Cox; Cun Li; Kristina Stuchlik; Otto W. Witte; Peter W. Nathanielsz; Thomas J. McDonald

Moderate maternal nutrient restriction during pregnancy occurs in both developing and developed countries. In addition to poverty, maternal dieting, teenage pregnancy, and uterine vascular problems in older mothers are causes of decreased fetal nutrition. We evaluated the impact of global 30% maternal nutrient reduction (MNR) on early fetal baboon brain maturation. MNR induced major cerebral developmental disturbances without fetal growth restriction or marked maternal weight reduction. Mechanisms evaluated included neurotrophic factor suppression, cell proliferation and cell death imbalance, impaired glial maturation and neuronal process formation, down-regulation of gene ontological pathways and related gene products, and up-regulated transcription of cerebral catabolism. Contrary to the known benefits from this degree of dietary reduction on life span, MNR in pregnancy compromises structural fetal cerebral development, potentially having an impact on brain function throughout life.


Obstetrics & Gynecology | 2009

Adverse Effects of Antenatal Glucocorticoids on Cerebral Myelination in Sheep

Iwa Antonow-Schlorke; Alexandra Helgert; Christine Gey; Turhan Coksaygan; Harald Schubert; Peter W. Nathanielsz; Otto W. Witte; Matthias Schwab

OBJECTIVE: To determine in fetal sheep the effect of betamethasone on myelination in relation to stage of myelination, number of treatment courses, dose, and route of administration. METHODS: Fetal expression of myelin basic protein (MBP), a marker of mature oligodendrocytes and myelin, was determined between 0.27 and 0.93 gestation. Short-term betamethasone effects were examined 24 hours after one maternal intramuscular treatment course (weight adjusted to equal the clinical dose of 2×8 mg betamethasone to a 70-kg woman) at 0.63, 0.75, and 0.87 gestation or after continuous 48-hour fetal intravenous infusion at 0.75 and 0.87 gestation. Lasting effects were examined 20 days after one and two treatment courses weight-adapted to the clinical dose of 2×8 mg or 2×12 mg betamethasone at 0.75 gestation. RESULTS: Myelin basic protein immunoreactivity was first detected in the internal capsule at 0.53 gestation, followed by the centrum semiovale, the superficial white matter, and corpus callosum at 0.63 gestation. Within 24 hours after treatment, betamethasone reduced the number of mature oligodendrocytes and MBP immunoreactivity. The effect decreased with gestational age. Maternal and fetal betamethasone administration had similar effects. Loss of MBP immunoreactivity was not reversed 20 days after two treatment courses, independent of dose. CONCLUSION: Betamethasone-induced delayed cerebral myelination is dependent on the stage of brain development in sheep. Betamethasone-related disturbances in myelination and any potential contribution to childhood behavior deficits need to be confirmed in clinical studies.


The Journal of Physiology | 2001

Effect of antenatal betamethasone treatment on microtubule‐associated proteins MAP1B and MAP2 in fetal sheep

Matthias Schwab; Iwa Antonow-Schlorke; Birgit Kuhn; Thomas Müller; Harald Schubert; Bernd Walter; Ulrich Sliwka; Peter W. Nathanielsz

1 Betamethasone has been used extensively to accelerate fetal lung maturation, yet little is known of its effects on neuronal morphogenesis in the developing fetus. Microtubule‐associated proteins (MAPs) are a diverse family of cytoskeletal proteins that are important for brain development and the maintenance of neuroarchitecture. 2 Vehicle (n = 7) or betamethasone (10 μg h−1, n = 7) was infused I.V. to fetal sheep over 48 h beginning at 0.87 of gestation (128 days of gestation), producing fetal plasma betamethasone concentrations resembling those to which the human fetus is exposed during antenatal glucocorticoid therapy. 3 Paraffin sections of the left hemisphere were stained with monoclonal antibodies against MAP1B and the MAP2 isoforms MAP2a,b,c and MAP2a,b. The level of the juvenile isoform MAP2c was determined by comparison of the two MAP2 immunostainings. 4 We were able to detect MAP1B and MAP2 immunoreactivity (IR) in the fetal sheep brain. MAP2c was the major MAP2, constituting 90.2 % of the total MAP2. Betamethasone exposure diminished MAP1B IR in the frontal cortex and caudate putamen (P < 0.05) but not in the hippocampus. A decrease of MAP2 IR was found in the frontal cortex, hippocampus and caudate putamen (P < 0.05). Loss of MAP2 IR was mainly due to the loss of MAP2c IR. Haematoxylin‐eosin staining did not demonstrate irreversible neuronal damage. 5 Regional cerebral blood flow determined using coloured microspheres was significantly decreased by 28 % in the frontal cortex and by 36 % in the caudate putamen but not in the hippocampus 24 h after the onset of betamethasone exposure (P < 0.05). The loss of MAP1B and MAP2a,b,c IR showed a significant correlation to the cerebral blood flow decrease only in the frontal cortex (P < 0.05). These data suggest that mechanisms other than metabolic insufficiency caused by the decreased cerebral blood flow may contribute to the loss of MAPs. 6 The results suggest that clinical doses of betamethasone may have acute effects on cytoskeletal proteins in the fetal brain.


The Journal of Physiology | 2002

Developmental changes in cerebral autoregulatory capacity in the fetal sheep parietal cortex.

Thomas Müller; Matthias Löhle; Harald Schubert; Reinhard Bauer; Carola Wicher; Iwa Antonow-Schlorke; Ulrich Sliwka; Peter W. Nathanielsz; Matthias Schwab

We validated laser Doppler flowmetry (LDF) for long‐term monitoring and detection of acute changes of local cerebral blood flow (lCBF) in chronically instrumented fetal sheep. Using LDF, we estimated developmental changes of cerebral autoregulation. Single fibre laser probes (0.4 mm in diameter) were implanted in and surface probes were placed on the parietal cerebral cortex at 105 ± 2 (n= 7) and 120 ± 2 days gestational age (dGA, n= 7). Basal lCBF was monitored over 5 days followed by a hypercapnic challenge (fetal arterial partial pressure of CO2, Pa,CO2: 83 ± 3 mmHg) during which lCBF changes obtained by LDF were compared to those obtained with coloured microspheres (CMSs). Mean arterial blood pressure (MABP) was increased and decreased using phenylephrine and sodium nitroprusside at 110 ± 2 and 128 ± 2 dGA. Intracortical and cortical surface laser probes gave stable measurements over 5 days. The lCBF increase during hypercapnia obtained by LDF correlated well with flows obtained using CMS (r = 0.89, P < 0.01). The signals of intracortical and surface laser probes also correlated well (r = 0.91, P < 0.01). Gliosis of 0.35 ± 0.06 mm around the tip of intracortical probes did not affect the measurements. The range of MABP over which cerebral autoregulation was observed increased from 20–48 mmHg at 110 dGA to 35 to > 95 mmHg at 128 dGA (P < 0.05). Since MABP increased from 33 to 54 mmHg over this period (P < 0.01), the range between the lower limit of cerebral autoregulation and the MABP increased from 13 mmHg at 110 dGA to 19 mmHg at 128 dGA (P < 0.01). LDF is a reliable tool to assess dynamic changes in cerebral perfusion continuously in fetal sheep.


Neuroscience Letters | 2001

Antenatal betamethasone treatment reduces synaptophysin immunoreactivity in presynaptic terminals in the fetal sheep brain

Iwa Antonow-Schlorke; Birgit Kuhn; Thomas Müller; Harald Schubert; Ulrich Sliwka; Peter W. Nathanielsz; Matthias Schwab

Knowledge of morphofunctional effects on the fetal brain induced by exogenous glucocorticoids is limited. Recently, we reported alterations of both the neuronal cytoskeleton and electrocortical function in the ovine fetal brain after antenatal betamethasone treatment in doses used in perinatal medicine. In the present study we examined whether these changes are accompanied by morphological alterations of synapses. Chronically instrumented fetal sheep at 0.87 of gestation were treated either with isotonic saline (n=7) or 10 microg/h betamethasone (n=7) over 48 h administered directly to the fetal jugular vein. Paraffin sections of the frontal neocortex, caudate putamen and hippocampus were stained with a monoclonal antibody against synaptophysin, a specific membrane protein of presynaptic vesicles and quantified morphometrically. Synaptophysin-like immunoreactivity (synaptophysin-LI) showed a widespread granular pattern in the neuropil. Betamethasone exposure reduced synaptophysin-LI in the frontal neocortex, caudate putamen and hippocampus by 46.9, 41.0 and 55.4%, respectively, (P<0.05) that was not accompanied by irreversible neuronal damage. These results suggest that clinical doses of betamethasone have acute effects on presynaptic terminals in the fetal sheep brain that could contribute to the altered complexity of electrocortical function that we have shown previously to occur following fetal exposure to betamethasone.


Growth Hormone & Igf Research | 2013

The frontal cortex IGF system is down regulated in the term, intrauterine growth restricted fetal baboon

L. Xie; Iwa Antonow-Schlorke; Matthias Schwab; Thomas J. McDonald; Peter W. Nathanielsz; Cun Li

OBJECTIVE The IGF system exerts systemic and local actions during development. We previously demonstrated that fetal cerebral cortical IGF1 is reduced at 0.5 gestation in our IUGR baboon nonhuman primate model. We hypothesized that by term protein expression of several key IGF system stimulatory peptide pathway components and downstream nutrient signaling effectors of IGF, mammalian target of rapamycin (mTOR) and S6, would decrease, indicating reduced cellular nutrient uptake and protein synthesis. DESIGN We fed 7 control baboons ad libitum while 6 baboons ate a globally reduced diet (70% of feed eaten by controls) from 0.16 gestation through pregnancy that produces IUGR. Fetuses were removed at Cesarean section at 0.9 gestation. Frontal cortex sections were stained for IGFI, IGFII, IGFRI, IGFR2, IGFBP2, 3, 5 and 6, and mTOR and ribosomal protein S6 and double stained with NeuN a neuron-specific nuclear antigen. RESULTS All proteins stained neuronal cytoplasm except IGFRI which showed only glial cell cytoplasmic and blood vessel staining. IUGR fetuses showed decreased frontal cortical immunoreactive IGFI, IGFII, IGFRI, IGFBP2, 5 and 6, and mTOR and S6 (p < 0.05). IGFBP3 increased (p < 0.05) and IGFR2 was unchanged (p > 0.05). There were no differences between male and female fetal brains. CONCLUSIONS When fetal nutrient availability is decreased, IUGR down regulates the IGF system and its mTOR signaling pathway in the fetal frontal cortex coincident with slowed growth. These findings emphasize the importance of the local tissue IGF system in fetal primate brain development.


Stroke Research and Treatment | 2013

Modification of the ladder rung walking task-new options for analysis of skilled movements.

Iwa Antonow-Schlorke; Julia Ehrhardt; Marcel Knieling

Method sensitivity is critical for evaluation of poststroke motor function. Skilled walking was assessed in horizontal, upward, and downward rung ladder walking to compare the demands of the tasks and test sensitivity. The complete step sequence of a walk was subjected to analysis aimed at demonstrating the walking pattern, step sequence, step cycle, limb coordination, and limb interaction to complement the foot fault scoring system. Rats (males, n = 10) underwent unilateral photothrombotic lesion of the motor cortex of the forelimb and hind limb areas. Locomotion was video recorded before the insult and at postischemic days 7 and 28. Analysis of walking was performed frame-by-frame. Walking along the rung ladder revealed different results that were dependent on ladder inclination. Horizontal walking was found to discriminate lesion-related motor deficits in forelimb, whereas downward walking demonstrates hind limb use most sensitively. A more frequent use of the impaired forelimb that possibly supported poststroke motor learning in rats was shown. The present study provides a novel system for a detailed analysis of the complete walking sequence and will help to provide a better understanding of how rats deal with motor impairments.


Acta Physiologica | 2017

Development of somatosensory‐evoked potentials in foetal sheep: effects of betamethasone

Paul Anegroaie; Martin G. Frasch; Sven Rupprecht; Iwa Antonow-Schlorke; Thomas Müller; Harald Schubert; Otto W. Witte; Matthias Schwab

Antenatal glucocorticoids are used to accelerate foetal lung maturation in babies threatened with premature labour. We examined the influence of glucocorticoids on functional and structural maturation of the central somatosensory pathway in foetal sheep. Somatosensory‐evoked potentials (SEP) reflect processing of somatosensory stimuli. SEP latencies are determined by afferent stimuli transmission while SEP amplitudes reveal cerebral processing.

Collaboration


Dive into the Iwa Antonow-Schlorke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cun Li

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. McDonald

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge