Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iwona Mruk is active.

Publication


Featured researches published by Iwona Mruk.


Nucleic Acids Research | 2014

To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems

Iwona Mruk; Ichizo Kobayashi

One of the simplest classes of genes involved in programmed death is that containing the toxin–antitoxin (TA) systems of prokaryotes. These systems are composed of an intracellular toxin and an antitoxin that neutralizes its effect. These systems, now classified into five types, were initially discovered because some of them allow the stable maintenance of mobile genetic elements in a microbial population through postsegregational killing or the death of cells that have lost these systems. Here, we demonstrate parallels between some TA systems and restriction–modification systems (RM systems). RM systems are composed of a restriction enzyme (toxin) and a modification enzyme (antitoxin) and limit the genetic flux between lineages with different epigenetic identities, as defined by sequence-specific DNA methylation. The similarities between these systems include their postsegregational killing and their effects on global gene expression. Both require the finely regulated expression of a toxin and antitoxin. The antitoxin (modification enzyme) or linked protein may act as a transcriptional regulator. A regulatory antisense RNA recently identified in an RM system can be compared with those RNAs in TA systems. This review is intended to generalize the concept of TA systems in studies of stress responses, programmed death, genetic conflict and epigenetics.


Nucleic Acids Research | 2008

Real-time kinetics of restriction–modification gene expression after entry into a new host cell

Iwona Mruk; Robert Blumenthal

Most type II restriction–modification (R–M) systems produce separate restriction endonuclease (REase) and methyltransferase (MTase) proteins. After R–M system genes enter a new cell, protective MTase must appear before REase to avoid host chromosome cleavage. The basis for this apparent temporal regulation is not well understood. PvuII and some other R–M systems appear to achieve this delay by cotranscribing the REase gene with the gene for an autogenous transcription activator/repressor (the ‘C’ protein C.PvuII). To test this model, bacteriophage M13 was used to introduce the PvuII genes into a bacterial population in a relatively synchronous manner. REase mRNA and activity appeared ∼10 min after those of the MTase, but never rose if there was an inactivating pvuIIC mutation. Infection with recombinant M13pvuII phage had little effect on cell growth, relative to infection with parental M13. However, infection of cells pre-expressing C.PvuII led to cessation of growth. This study presents the first direct demonstration of delayed REase expression, relative to MTase, when type II R–M genes enter a new host cell. Surprisingly, though the C and REase genes are cotranscribed, the pvuIIC portion of the mRNA was more abundant than the pvuIIR portion after stable establishment of the R–M system.


Nucleic Acids Research | 2007

Regulatory circuit based on autogenous activation-repression: roles of C-boxes and spacer sequences in control of the PvuII restriction-modification system.

Iwona Mruk; Preeti Rajesh; Robert Blumenthal

Type II restriction-modification (R-M) systems comprise a restriction endonuclease (REase) and a protective methyltransferase (MTase). After R-M genes enter a new cell, MTase must appear before REase or the chromosome will be cleaved. PvuII and some other R-M systems achieve this delay by cotranscribing the REase gene with the gene for an autogenous transcription activator (the controlling or ‘C’ protein C.PvuII). This study reveals, through in vivo titration, that C.PvuII is not only an activator but also a repressor for its own gene. In other systems, this type of circuit can result in oscillatory behavior. Despite the use of identical, symmetrical C protein-binding sequences (C-boxes) in the left and right operators, C.PvuII showed higher in vitro affinity for OL than for OR, implicating the spacer sequences in this difference. Mutational analysis associated the repression with OR, which overlaps the promoter −35 hexamer but is otherwise dispensable for activation. A nonrepressing mutant exhibited poor establishment in new cells. Comparing promoter-operator regions from PvuII and 29 R-M systems controlled by C proteins revealed that the most-highly conserved sequence is the tetranucleotide spacer separating OL from OR. Any changes in that spacer reduced the stability of C.PvuII-operator complexes and abolished activation.


Nucleic Acids Research | 2011

Antisense RNA associated with biological regulation of a restriction–modification system

Iwona Mruk; Yaoping Liu; Liying Ge; Ichizo Kobayashi

Restriction–modification systems consist of a modification enzyme that methylates a specific DNA sequence and a restriction endonuclease that cleaves DNA lacking this epigenetic signature. Their gene expression should be finely regulated because their potential to attack the host bacterial genome needs to be controlled. In the EcoRI system, where the restriction gene is located upstream of the modification gene in the same orientation, we previously identified intragenic reverse promoters affecting gene expression. In the present work, we identified a small (88 nt) antisense RNA (Rna0) transcribed from a reverse promoter (PREV0) at the 3′ end of the restriction gene. Its antisense transcription, as measured by transcriptional gene fusion, appeared to be terminated by the PM1,M2 promoter. PM1,M2 promoter-initiated transcription, in turn, appeared to be inhibited by PREV0. Mutational inactivation of PREV0 increased expression of the restriction gene. The biological significance of this antisense transcription is 2-fold. First, a mutation in PREV0 increased restriction of incoming DNA. Second, the presence of the antisense RNA gene (ecoRIA) in trans alleviated cell killing after loss of the EcoRI plasmid (post-segregational killing). Taken together, these results strongly suggested the involvement of an antisense RNA in the biological regulation of this restriction–modification system.


Nucleic Acids Research | 2009

Tuning the relative affinities for activating and repressing operators of a temporally regulated restriction-modification system

Iwona Mruk; Robert Blumenthal

Most type II restriction-modification (R-M) systems produce separate endonuclease (REase) and methyltransferase (MTase) proteins. After R-M genes enter a new cell, MTase activity must appear before REase or the host chromosome will be cleaved. Temporal control of these genes thus has life-or-death consequences. PvuII and some other R-M systems delay endonuclease expression by cotranscribing the REase gene with the upstream gene for an autogenous activator/repressor (C protein). C.PvuII was previously shown to have low levels early, but positive feedback later boosts transcription of the C and REase genes. The MTase is expressed without delay, and protects the host DNA. C.PvuII binds to two sites upstream of its gene: OL, associated with activation, and OR, associated with repression. Even when symmetry elements of each operator are made identical, C.PvuII binds preferentially to OL. In this study, the intra-operator spacers are shown to modulate relative C.PvuII affinity. In light of a recently reported C.Esp1396I-DNA co-crystal structure, in vitro and in vivo effects of altering OL and OR spacers were determined. The results suggest that the GACTnnnAGTC consensus is the primary determinant of C.PvuII binding affinity, with intra-operator spacers playing a fine-tuning role that affects mobility of this R-M system.


Applied and Environmental Microbiology | 2007

A Rapid and Efficient Method for Cloning Genes of Type II Restriction-Modification Systems by Use of a Killer Plasmid

Iwona Mruk; Tadeusz Kaczorowski

ABSTRACT We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the killer plasmid. The only surviving bacteria are those which carry the gene specifying a protective DNA methyltransferase. Conceptually, this in vivo selection approach resembles earlier methods in which a plasmid library was selected in vitro by digestion with a suitable restriction endonuclease, but it is much more efficient than those methods. The new method was successfully used to clone two R-M systems, BstZ1II from Bacillus stearothermophilus 14P and Csp231I from Citrobacter sp. strain RFL231, both isospecific to the prototype HindIII R-M system.


Nucleic Acids Research | 2016

Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system

Monika Rezulak; Izabela Borsuk; Iwona Mruk

Restriction–modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo. Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems.


Journal of Applied Genetics | 2015

Relaxed specificity of prokaryotic DNA methyltransferases results in DNA site-specific modification of RNA/DNA heteroduplexes

Ewa Wons; Iwona Mruk; Tadeusz Kaczorowski

RNA/DNA hybrid duplexes regularly occur in nature, for example in transcriptional R loops. Their susceptibility to modification by DNA-specific or RNA-specific enzymes is, thus, a biologically relevant question, which, in addition, has possible biotechnological implications. In this study, we investigated the activity of four isospecific DNA methyltransferases (M.EcoVIII, M.LlaCI, M.HindIII, M.BstZ1II) toward an RNA/DNA duplex carrying one 5′-AAGCUU-3′/3′-TTCGAA-5′ target sequence. The analyzed enzymes belong to the β-group of adenine N6-methyltransferases and recognize the palindromic DNA sequence 5′-AAGCTT-3′/3′-TTCGAA-5′. Under standard conditions, none of these isospecific enzymes could detectibly methylate the RNA/DNA duplex. However, the addition of agents that generally relax specificity, such as dimethyl sulfoxide (DMSO) and glycerol, resulted in substantial methylation of the RNA/DNA duplex by M.EcoVIII and M.LlaCI. Only the DNA strand of the RNA/DNA duplex was methylated. The same was not observed for M.HindIII or M.BstZ1II. This is, to our knowledge, the first report that demonstrates such activity by prokaryotic DNA methyltransferases. Possible applications of these findings in a laboratory practice are also discussed.


Scientific Reports | 2018

Isospecific adenine DNA methyltransferases show distinct preferences towards DNA substrates

Ewa Wons; Iwona Mruk; Tadeusz Kaczorowski

Here, we report results on systematic analysis of DNA substrate preferences of three N6-adenine β-class DNA methyltransferases that are part of the type II restriction-modification systems. The studied enzymes were: M.EcoVIII, M.HindIII and M.LlaCI, which although found in phylogenetically distant bacteria (γ-proteobacteria and low-GC Gram-positive bacteria), recognize the same palindromic specific sequence 5′-AAGCTT-3′ and catalyze formation of N6-methyladenine at the first A-residue. As expected overall the enzymes share the most analyzed features, but they show also some distinct differences in substrate recognition. Therefore DNA methylation reactions were carried out not only under standard, but also under relaxed conditions using DMSO or glycerol. We found that all of these enzymes preferred DNA containing a hemimethylated target site, but differ in modification of ssDNA, especially more pronounced for M.EcoVIII under relaxed conditions. In these conditions they also have shown varied preferences toward secondary sites, which differ by one nucleotide from specific sequence. They preferred sequences with substitutions at the 1st (A1 → G/C) and at the 2nd position (A2 → C), while sites with substitutions at the 3rd position (G3 → A/C) were modified less efficiently. Kinetic parameters of the methylation reaction carried out by M.EcoVIII were determined. Methylation efficiency (kcat/Km) of secondary sites was 4.5–10 times lower when compared to the unmethylated specific sequences, whilst efficiency observed for the hemimethylated substrate was almost 4.5 times greater. We also observed a distinct effect of analyzed enzymes on unspecific interaction with DNA phosphate backbone. We concluded that for all three enzymes the most critical is the phosphodiester bond between G3-C4 nucleotides at the center of the target site.


Microbiology | 2003

Characterization of the LlaCI methyltransferase from Lactococcus lactis subsp. cremoris W15 provides new insights into the biology of type II restriction-modification systems

Iwona Mruk; Magdalena Cichowicz; Tadeusz Kaczorowski

Collaboration


Dive into the Iwona Mruk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Wons

University of Gdańsk

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge