Tadeusz Kaczorowski
University of Gdańsk
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tadeusz Kaczorowski.
Gene | 1989
Tadeusz Kaczorowski; Piotr M. Skowron; Anna J. Podhajska
The restriction endonuclease FokI from Flavobacterium okeanokoites was purified to homogeneity. Based on gel filtration, sedimentation and sodium dodecyl sulfate-polyacrylamide-gel electrophoresis, the following properties of the enzyme were determined: FokI exists in one active monomeric form, and has an Mr of 64-65.4 x 10(3).FokI is a strongly basic protein with an isoelectric point of 9.4. The enzyme exhibits restriction activity in the pH range 5.0 to 10.5 (maximum level at pH 7.0-8.5) and its divalent cation requirement is satisfied not only by Mg2+, but also by Co2+, Mn2+, Ni2+, Cd2+, Zn2+ and Fe2+.
Gene | 1996
Tadeusz Kaczorowski; Waclaw Szybalski
The SPEL-6 (sequential rimer elongation by ligation of 6-mers) procedure is based on the assembly of DNA primers by ligation of three or more hexamers taken from a library of 4096 hexamers. In this way, the synthesized primers enable DNA sequencing by primer walking. Ligation by both T4 DNA ligase and Rhodothermus marinus thermophilic DNA ligase is highly cooperative. Sequencing ladders obtained with 18-60-nucleotide (nt) primers (produced by ligation of three to ten hexamers using T4 DNA ligase) were all of high quality, with no spurious bands. R. marinus DNA ligase requires at least seven hexamers for successful primer synthesis. Long primers (up to 60 nt), which are easy to obtain, especially by automated ligation, offer a definite advantage in DNA priming in regions with pronounced secondary structure. Moreover, the SPEL-6 procedure for DNA sequencing reduces the sequencing effort manifold. An additional application of hexamer ligation is the detection of point mutants, as described here.
Gene | 1993
Piotr M. Skowron; Tadeusz Kaczorowski; Janusz Tucholski; Anna J. Podhajska
The DNA-binding properties of the FokI restriction endonuclease were studied using the gel-mobility-shift assay. Specific recognition of the cognate sequence and cleavage of DNA are distinguishable functions and can be separated. FokI binds to its recognition site predominantly as a monomer. At high concentrations, FokI exhibits a cooperative recognition sequence-dependent aggregation. In 20 mM KCl/10 mM Tris.HCl buffer, the binding constant of FokI to its cognate site is equal 6.0-7.9 x 10(8)/mol and is lower than the values for most gene-regulatory proteins. FokI binding is 600-1500 times weaker to non-cognate double-stranded DNA than to the GGATG site, and 30,000 times weaker to single-stranded DNA or tRNA. The method of Bading [Nucleic Acids Res. 16 (1988) 5241-5248], used for determining the stoichiometry of protein bound to DNA by gel-mobility-shift assay, is extended.
Applied and Environmental Microbiology | 2009
Joanna Nakonieczna; Tadeusz Kaczorowski; Agnieszka Obarska-Kosinska; Janusz M. Bujnicki
ABSTRACT MmeI from Methylophilus methylotrophus belongs to the type II restriction-modification enzymes. It recognizes an asymmetric DNA sequence, 5′-TCCRAC-3′ (R indicates G or A), and cuts both strands at fixed positions downstream of the specific site. This particular feature has been exploited in transcript profiling of complex genomes (using serial analysis of gene expression technology). We have shown previously that the endonucleolytic activity of MmeI is strongly dependent on the presence of S-adenosyl-l-methionine (J. Nakonieczna, J. W. Zmijewski, B. Banecki, and A. J. Podhajska, Mol. Biotechnol. 37:127-135, 2007), which puts MmeI in subtype IIG. The same cofactor is used by MmeI as a methyl group donor for modification of an adenine in the upper strand of the recognition site to N6-methyladenine. Both enzymatic activities reside in a single polypeptide (919 amino acids [aa]), which puts MmeI also in subtype IIC of the restriction-modification systems. Based on a molecular model, generated with the use of bioinformatic tools and validated by site-directed mutagenesis, we were able to localize three functional domains in the structure of the MmeI enzyme: (i) the N-terminal portion containing the endonucleolytic domain with the catalytic Mg2+-binding motif D70-X9-EXK82, characteristic for the PD-(D/E)XK superfamily of nucleases; (ii) a central portion (aa 310 to 610) containing nine sequence motifs conserved among N6-adenine γ-class DNA methyltransferases; (iii) the C-terminal portion (aa 610 to 919) containing a putative target recognition domain. Interestingly, all three domains showed highest similarity to the corresponding elements of type I enzymes rather than to classical type II enzymes. We have found that MmeI variants deficient in restriction activity (D70A, E80A, and K82A) can bind and methylate specific nucleotide sequence. This suggests that domains of MmeI responsible for DNA restriction and modification can act independently. Moreover, we have shown that a single amino acid residue substitution within the putative target recognition domain (S807A) resulted in a MmeI variant with a higher endonucleolytic activity than the wild-type enzyme.
Gene | 1996
Tadeusz Kaczorowski; Waclaw Szybalski
A procedure based on the assembly of sequencing primers by hexamer ligation and then using them in automated DNA sequencing is described. This method is based on a four-color fluorescent terminator chemistry. Sequencing ladders were analyzed using an ABI 373 DNA sequencer (Applied Biosystems, Foster City, CA, USA). The best results were obtained for primers assembled by ligation of four to ten hexamers. The accuracy of the method was estimated to be 99.5% up to 400 nt of the read sequence, and somewhat lower at 400-600 nt.
Applied and Environmental Microbiology | 2014
Magdalena Plotka; Anna-Karina Kaczorowska; Aleksandra Stefanska; Agnieszka Morzywolek; Olafur H. Fridjonsson; Stanislaw Dunin-Horkawicz; Lukasz Kozlowski; Gudmundur O. Hreggvidsson; Jakob K. Kristjansson; Slawomir Dabrowski; Janusz M. Bujnicki; Tadeusz Kaczorowski
ABSTRACT In this study, we present the discovery and characterization of a highly thermostable endolysin from bacteriophage Ph2119 infecting Thermus strain MAT2119 isolated from geothermal areas in Iceland. Nucleotide sequence analysis of the 16S rRNA gene affiliated the strain with the species Thermus scotoductus. Bioinformatics analysis has allowed identification in the genome of phage 2119 of an open reading frame (468 bp in length) coding for a 155-amino-acid basic protein with an M r of 17,555. Ph2119 endolysin does not resemble any known thermophilic phage lytic enzymes. Instead, it has conserved amino acid residues (His30, Tyr58, His132, and Cys140) that form a Zn2+ binding site characteristic of T3 and T7 lysozymes, as well as eukaryotic peptidoglycan recognition proteins, which directly bind to, but also may destroy, bacterial peptidoglycan. The purified enzyme shows high lytic activity toward thermophiles, i.e., T. scotoductus (100%), Thermus thermophilus (100%), and Thermus flavus (99%), and also, to a lesser extent, toward mesophilic Gram-negative bacteria, i.e., Escherichia coli (34%), Serratia marcescens (28%), Pseudomonas fluorescens (13%), and Salmonella enterica serovar Panama (10%). The enzyme has shown no activity against a number of Gram-positive bacteria analyzed, with the exception of Deinococcus radiodurans (25%) and Bacillus cereus (15%). Ph2119 endolysin was found to be highly thermostable: it retains approximately 87% of its lytic activity after 6 h of incubation at 95°C. The optimum temperature range for the enzyme activity is 50°C to 78°C. The enzyme exhibits lytic activity in the pH range of 6 to 10 (maximum at pH 7.5 to 8.0) and is also active in the presence of up to 500 mM NaCl.
Molecular Biotechnology | 1999
Tadeusz Kaczorowski; Marian Sektas; Piotr M. Skowron; Anna J. Podhajska
The gene encoding the FokI methyltransferase from Flavobacterium okeanokoites was cloned into an Escherichia coli vector. The transcriptional start sites were mapped as well as putative −10 and −35 regions of the fokIM promoter. Enzyme overproduction was ensured by cloning the fokIM gene under the φ 10 promoter of phage T7. M·FokI was purified using a two-step chromatography procedure. M·FokI is a monomeric protein with a Mr=76,000±1,500 under denaturing conditions. It contains 21 Arg residues, and at least one of which is required for activity as shown by inhibition using 2,3-butanedione. Deletion mutants in the N- and C-terminus of M·FokI were isolated and characterized. The N-terminal derivative (M·FokIN) methylates the adenine residue within the sequence 5′-GGATG-3′, whereas the C-terminal derivative (M·FokIC) modifies the adenine residue within the sequence 5′-CATCC-3′. Substrate-protection studies, utilizing chemical modification combined with data on the effect of divalent cations and pH on methylation activity, proved the existence of two catalytic centers within the FokI methyltransferase molecule. M·FokI and its truncated derivatives require S-adenosyl-l-methionine as the methyl-group donor, and they are strongly inhibited by divalent cations (Mg2+, Ca2+, Ba2+, Mn2+, and Zn2+) and S-adenosyl-l-homocysteine. The Km values for the methyl donor, S-adenosyl-{spl}-methionine are 0.6 µM (M·FokI), 0.4 µM (M·FokIN), and 0.9 µM (M·FokIC) while the Km values for substrate λ DNA are 1.2 nM (M·FokI), 1.4 nM (M·FokIN), and 1.3 nM (M·FokIC).
Molecular Biotechnology | 1996
Tadeusz Kaczorowski; Marian Sektas
This article presents a simple and rapid method for removal of unincorporated label and proteins from DNA sequencing reactions by using Wizard purification resin. This method can be successfully applied for preparation of end-labeled oligonucleotides free of unincorporated label, which is important in experiments (including DNA sequencing) when the level of background should be as low as possible. Also, this method is effective in removal of proteins from DNA sequencing reactions.
Plasmid | 2015
Robert Boratynski; Agnieszka Dekowska; Tadeusz Kaczorowski
In the present study the role of the mechanisms responsible for maintenance of a natural plasmid pEC156, that carries genes of the EcoVIII restriction-modification system was investigated. Analysis of this plasmids genetic content revealed the presence of genetic determinants suggesting two such mechanisms. The first of them relies on site specific recombination utilizing the Xer/cer molecular machinery, while the second involves a restriction-modification system as an addiction module. Our analysis indicated that three factors affect the maintenance of pEC156: (i) a cis-acting cer site involved in resolution of plasmid multimers, (ii) a gene coding for EcoVIII endonuclease, and (iii) plasmid copy number control. The lowest stability was observed with pEC156 derivatives deprived of the cer site. Decreased stability of pEC156 derivatives was also observed in E.coli strains deficient in genes coding for proteins involved in plasmid multimer resolution (XerC, XerD, ArgR and PepA). A similar effect, but to a much lesser extent was observed for the pEC156 derivative without a functional gene coding for EcoVIII endonuclease. Our results indicate that the presence of the cer site is more important for pEC156 stable maintenance than the presence of a functional gene coding for EcoVIII endonuclease. In our work we also tested maintenance of pEC156 possessing a ColE1-type replicon in bacteria belonging to Enterobacteriaceae family. We have found that pEC156 was most stably maintained in Enterobacter cloacae and Klebsiella oxytoca representing coli-type enterobacteria. We have found that in all enterobacteria tested pEC156 derivatives deficient in the cer site were significantly less stably maintained than cer(+) variants.
PLOS ONE | 2015
Magdalena Plotka; Anna-Karina Kaczorowska; Agnieszka Morzywolek; Joanna Makowska; Lukasz Kozlowski; Audur Thorisdottir; Sigurlaug Skirnisdottir; Sigridur Hjorleifsdottir; Olafur H. Fridjonsson; Gudmundur O. Hreggvidsson; Jakob K. Kristjansson; Slawomir Dabrowski; Janusz M. Bujnicki; Tadeusz Kaczorowski
Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 104 cal mol-1). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.