Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iztok Dogsa is active.

Publication


Featured researches published by Iztok Dogsa.


PLOS ONE | 2013

Exopolymer Diversity and the Role of Levan in Bacillus subtilis Biofilms

Iztok Dogsa; Mojca Brloznik; David Stopar; Ines Mandic-Mulec

Exopolymeric substances (EPS) are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM) and sucrose-poor (MSgg and Czapek) media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa) found only in biofilms, while small polymers (Mw<200 kD) dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Private link between signal and response in Bacillus subtilis quorum sensing

Anna Oslizlo; Polonca Stefanic; Iztok Dogsa; Ines Mandic-Mulec

Significance In a social process called “quorum sensing” (QS) bacteria secrete and share signaling molecules that bind to specific receptors and induce adaptive responses within the population. We use the ComQXP QS system of Bacillus subtilis to study the intracellular codependence of two essential QS functions: signal production and signal response. We demonstrate that the QS signal-deficient mutants have an overly responsive QS system, a disturbed balance between primary and secondary metabolism, and an overproduction of the secondary metabolite surfactin in the presence of exogenously provided signal. Such mutants fail to compete with the socially active signal producers due to surfactin-related mechanisms that discriminate the two populations. We believe that a constraint on signal production preserves QS functionality in the natural microbial populations. Bacteria coordinate their behavior using quorum sensing (QS), whereby cells secrete diffusible signals that generate phenotypic responses associated with group living. The canonical model of QS is one of extracellular signaling, where signal molecules bind to cognate receptors and cause a coordinated response across many cells. Here we study the link between QS input (signaling) and QS output (response) in the ComQXPA QS system of Bacillus subtilis by characterizing the phenotype and fitness of comQ null mutants. These lack the enzyme to produce the ComX signal and do not activate the ComQXPA QS system in other cells. In addition to the activation effect of the signal, however, we find evidence of a second, repressive effect of signal production on the QS system. Unlike activation, which can affect other cells, repression acts privately: the de-repression of QS in comQ cells is intracellular and only affects mutant cells lacking ComQ. As a result, the QS signal mutants have an overly responsive QS system and overproduce the secondary metabolite surfactin in the presence of the signal. This surfactin overproduction is associated with a strong fitness cost, as resources are diverted away from primary metabolism. Therefore, by acting as a private QS repressor, ComQ may be protected against evolutionary competition from loss-of-function mutations. Additionally, we find that surfactin participates in a social selection mechanism that targets signal null mutants in coculture with signal producers. Our study shows that by pleiotropically combining intracellular and extracellular signaling, bacteria may generate evolutionarily stable QS systems.


Langmuir | 2014

Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan.

Elizabeta Benigar; Iztok Dogsa; David Stopar; Andrej Jamnik; Irena Kralj Cigić; Matija Tomšič

The polysaccharide levan is a homopolymer of fructose and appears in nature as an important structural component of some bacterial biofilms. This paper reports the structural and dynamic properties of aqueous solutions of levan of various origin obtained from dynamic rheological, small-angle X-ray scattering, static and dynamic light scattering, as well as density and sound velocity measurements, determination of polymer branching after per-O-methylation, and microscopy. Besides samples of commercially available levan from Zymomonas mobilis and Erwinia herbicola, we also isolated, purified, and studied a levan sample from the biofilm of Bacillus subtilis. The results of dynamic rheological and light scattering measurements revealed very interesting viscoelastic properties of levan solutions even at very low polymer concentrations. The findings were complemented by small-angle X-ray scattering data that revealed some important differences in the structure of the aqueous levan solutions at the molecular level. Besides presenting detailed dynamic and structural results on the polysaccharide systems of various levans, one of the essential goals of this work was to point out the level of structural information that may be obtained for such polymer systems by combining basic physicochemical, rheological, and various light scattering techniques.


Carbohydrate Polymers | 2014

Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering.

Iztok Dogsa; Matija Tomšič; Janez Orehek; Elizabeta Benigar; Andrej Jamnik; David Stopar

Carboxymethyl cellulose (CMC) is one of the most widely used thickening agents in industry. The combination of small-angle X-ray scattering (SAXS), static and dynamic light scattering, as well as viscosity measurements and microscopy at different pH values was utilized to explore the physicochemical properties of CMC on a scale ranging from individual macromolecules to supramolecular assemblies. The supramolecular structure of CMC was represented as a set of characteristic sample subspaces based on SAXS data utilizing the string-of-beads model. The results indicate that at pH 7.0 individual CMC molecules are approximately uniformly distributed in a supramolecular structure owing to strong intra- and intermolecular repulsive interactions. The structure of CMC is most expanded at the value of pKa, where it has the largest radius of gyration, persistence length, and size of heterogeneous regions. Below pKa the majority of the CMC sample volume belongs to the low density subspaces. Most of CMC molecules, however, reside in a few high density subspaces. Dynamically, supramolecular structure of CMC is composed of fast diffusive relaxation processes embedded in a background of non-diffusive slow relaxation process at high pH and mostly slow relaxation processes at low pH. The rheological properties of CMC at different pH values were directly related to the CMC supramolecular structure in the aqueous environment.


PLOS ONE | 2014

ComQXPA Quorum Sensing Systems May Not Be Unique to Bacillus subtilis: A Census in Prokaryotic Genomes

Iztok Dogsa; Kumari Sonal Choudhary; Ziva Marsetic; Sanjarbek Hudaiberdiev; Roberto Vera; Sándor Pongor; Ines Mandic-Mulec

The comQXPA locus of Bacillus subtilis encodes a quorum sensing (QS) system typical of Gram positive bacteria. It encodes four proteins, the ComQ isoprenyl transferase, the ComX pre-peptide signal, the ComP histidine kinase, and the ComA response regulator. These are encoded by four adjacent genes all situated on the same chromosome strand. Here we present results of a comprehensive census of comQXPA-like gene arrangements in 2620 complete and 6970 draft prokaryotic genomes (sequenced by the end of 2013). After manually checking the data for false-positive and false-negative hits, we found 39 novel com-like predictions. The census data show that in addition to B. subtilis and close relatives, 20 comQXPA-like loci are predicted to occur outside the B. subtilis clade. These include some species of Clostridiales order, but none outside the phylum Firmicutes. Characteristic gene-overlap patterns were observed in comQXPA loci, which were different for the B. subtilis-like and non-B. subtilis-like clades. Pronounced sequence variability associated with the ComX peptide in B. subtilis clade is evident also in the non-B. subtilis clade suggesting grossly similar evolutionary constraints in the underlying quorum sensing systems.


Biophysical Journal | 2015

Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology.

Biljana Stojković; Simon Sretenovic; Iztok Dogsa; Igor Poberaj; David Stopar

We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples.


Langmuir | 2016

Structure and Dynamics of a Model Polymer Mixture Mimicking a Levan-Based Bacterial Biofilm of Bacillus subtilis

Elizabeta Benigar; Andreja Zupančič Valant; Iztok Dogsa; Simon Sretenovic; David Stopar; Andrej Jamnik; Matija Tomšič

In this paper, we report on the structure and dynamics of biologically important model polymer mixtures that mimic the extracellular polymeric matrix in native biofilm of Bacillus subtilis. This biofilm is rich in nonionic polysaccharide levan, but also contains other biopolymers such as DNA and proteins in small concentrations. Aiming to identify the contribution of each component to the formation of the biofilm, our investigations encompassed dynamic rheology, small-angle X-ray scattering, dynamic light scattering, microscopy, densitometry, and sound velocity measurements. As it turned out, this very powerful combination of techniques is able to provide solid results on the dynamical and structural aspects of the microbiologically and chemically complex biofilm formations. Macroscopic rheological measurements revealed that the addition of DNA to levan solution increased the viscosity, pseudoplasticity, and elasticity of the system. The addition of protein contributed similarly, but also increased the rigidity of the system. This confirms that the presence of minor biofilm components is essential for biofilm formation. DNA and proteins appear to confine levan molecules within their supramolecular structure and, in this way, restrict the role of levan to merely a filling agent. These findings were complemented by small-angle X-ray scattering data, which provided insight into the structure on a molecular scale. One of the essential goals of this work was to compare the structural properties of the native biofilm and synthetic biofilm mixture.


Carbohydrate Polymers | 2014

New carboxymethyl cellulose tosylate with low biodeterioration

Janez Orehek; Klemen Petek; Iztok Dogsa; David Stopar

Microbial biodegradation and biodeterioration of cellulose based thickeners is a serious problem in industry. A new tosylic ester of carboxymethyl cellulose (TsCMC) was prepared with anhydride of p-toluensulphonic acid. The TsCMC has improved rheological properties, higher viscosity and pseudoplasticity, superior emulsification properties and decreased wettability compared to parental CMC. The biodeterioration of TsCMC was significantly reduced compared to parental CMC or other commercially used modified cellulose thickeners in water based paint industry. Improved rheological properties combined with low biodeterioration make TsCMC a promising new material for industrial applications with a potential to reduce the use of hazardous antimicrobial agents.


Nature Communications | 2017

An early mechanical coupling of planktonic bacteria in dilute suspensions

Simon Sretenovic; Biljana Stojković; Iztok Dogsa; Rok Kostanjšek; Igor Poberaj; David Stopar

It is generally accepted that planktonic bacteria in dilute suspensions are not mechanically coupled and do not show correlated motion. The mechanical coupling of cells is a trait that develops upon transition into a biofilm, a microbial community of self-aggregated bacterial cells. Here we employ optical tweezers to show that bacteria in dilute suspensions are mechanically coupled and show long-range correlated motion. The strength of the coupling increases with the growth of liquid bacterial culture. The matrix responsible for the mechanical coupling is composed of cell debris and extracellular polymer material. The fragile network connecting cells behaves as viscoelastic liquid of entangled extracellular polymers. Our findings point to physical connections between bacteria in dilute bacterial suspensions that may provide a mechanistic framework for understanding of biofilm formation, osmotic flow of nutrients, diffusion of signal molecules in quorum sensing, or different efficacy of antibiotic treatments at low and high bacterial densities.Planktonic bacteria are untethered to surfaces or to each other, and thus are expected to move independently when at low cell densities. Here Sretenovic et al. show, using optical tweezers, that bacteria in dilute suspensions are mechanically coupled and show long-range correlated motion.


Data in Brief | 2017

Physicochemical data on aqueous polymeric systems of methyl cellulose and lambda- and kappa-carrageenan: SAXS, rheological, densitometry, and sound velocity measurements

Jure Cerar; Iztok Dogsa; Andrej Jamnik; Matija Tomšič

General as well as more specific physicochemical data obtained by studying the structure and various dynamical properties of aqueous polymer systems of methyl cellulose, λ−carrageenan, and κ−carrageenan are presented in graphical and numeric tabular form. The data provide basic polymer characterization info as also a specific structural and dynamical info for aqueous solutions of three industrially very important polymers (food additives) that are available commercially. The commercial availability has much bigger impact to applications, research and connected advances, when the basic substances are well characterized – a feature that is still missing for many commercially available polymers unfortunately.

Collaboration


Dive into the Iztok Dogsa's collaboration.

Top Co-Authors

Avatar

David Stopar

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Poberaj

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Anna Oslizlo

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Jure Cerar

University of Ljubljana

View shared research outputs
Researchain Logo
Decentralizing Knowledge