Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Izumi C. Mori is active.

Publication


Featured researches published by Izumi C. Mori.


The EMBO Journal | 2003

NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in arabidopsis

June M. Kwak; Izumi C. Mori; Zhen-Ming Pei; Nathalie Leonhardt; Miguel Angel Torres; Jeffery L. Dangl; Rachel E. Bloom; Sara Bodde; Jonathan D. G. Jones; Julian I. Schroeder

Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell‐expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA‐induced stomatal closing, ABA promotion of ROS production, ABA‐induced cytosolic Ca2+ increases and ABA‐ activation of plasma membrane Ca2+‐permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate‐limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.


PLOS Biology | 2006

CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure

Izumi C. Mori; Yoshiyuki Murata; Yingzhen Yang; Shintaro Munemasa; Yong-Fei Wang; Shannon Andreoli; Hervé Tiriac; Jose M. Alonso; Jeffery F. Harper; Joseph R. Ecker; June M. Kwak; Julian I. Schroeder

Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.


Plant Physiology | 2004

Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction

Izumi C. Mori; Julian I. Schroeder

Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules. Recent studies have shown that production of ROS occurs in response to many physiological stimuli in plant cells, including pathogen attack, hormone signaling, polar growth, and gravitropism. Evidence is emerging that ROS


Plant Physiology | 2002

Convergence of Calcium Signaling Pathways of Pathogenic Elicitors and Abscisic Acid in Arabidopsis Guard Cells

Birgit Klüsener; Jared Young; Yoshiyuki Murata; Gethyn J. Allen; Izumi C. Mori; Véronique Hugouvieux; Julian I. Schroeder

A variety of stimuli, such as abscisic acid (ABA), reactive oxygen species (ROS), and elicitors of plant defense reactions, have been shown to induce stomatal closure. Our study addresses commonalities in the signaling pathways that these stimuli trigger. A recent report showed that both ABA and ROS stimulate an NADPH-dependent, hyperpolarization-activated Ca2+ influx current in Arabidopsis guard cells termed “ICa” (Z.M. Pei, Y. Murata, G. Benning, S. Thomine, B. Klüsener, G.J. Allen, E. Grill, J.I. Schroeder, Nature [2002] 406: 731–734). We found that yeast (Saccharomyces cerevisiae) elicitor and chitosan, both elicitors of plant defense responses, also activate this current and activation requires cytosolic NAD(P)H. These elicitors also induced elevations in the concentration of free cytosolic calcium ([Ca2+]cyt) and stomatal closure in guard cells. ABA and ROS elicited [Ca2+]cytoscillations in guard cells only when extracellular Ca2+was present. In a 5 mm KCl extracellular buffer, 45% of guard cells exhibited spontaneous [Ca2+]cytoscillations that differed in their kinetic properties from ABA-induced Ca2+ increases. These spontaneous [Ca2+]cyt oscillations also required the availability of extracellular Ca2+ and depended on the extracellular potassium concentration. Interestingly, when ABA was applied to spontaneously oscillating cells, ABA caused cessation of [Ca2+]cyt elevations in 62 of 101 cells, revealing a new mode of ABA signaling. These data show that fungal elicitors activate a shared branch with ABA in the stress signal transduction pathway in guard cells that activates plasma membrane ICa channels and support a requirement for extracellular Ca2+ for elicitor and ABA signaling, as well as for cellular [Ca2+]cyt oscillation maintenance.


Plant and Cell Physiology | 2010

Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

Takayuki Sasaki; Izumi C. Mori; Takuya Furuichi; Shintaro Munemasa; Kiminori Toyooka; Ken Matsuoka; Yoshiyuki Murata; Yoko Yamamoto

Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.


Plant Physiology | 2011

The Arabidopsis Calcium Dependent Protein Kinase, CPK6, functions as a Positive Regulator of Methyl Jasmonate Signaling in Guard Cells.

Shintaro Munemasa; Mohammad Anowar Hossain; Yoshimasa Nakamura; Izumi C. Mori; Yoshiyuki Murata

Previous studies have demonstrated that methyl jasmonate (MeJA) induces stomatal closure dependent on change of cytosolic free calcium concentration in guard cells. However, these molecular mechanisms of intracellular Ca2+ signal perception remain unknown. Calcium-dependent protein kinases (CDPKs) function as Ca2+ signal transducers in various plant physiological processes. It has been reported that four Arabidopsis (Arabidopsis thaliana) CDPKs, CPK3, CPK6, CPK4, and CPK11, are involved in abscisic acid signaling in guard cells. It is also known that there is an interaction between MeJA and abscisic acid signaling in guard cells. In this study, we examined the roles of these CDPKs in MeJA signaling in guard cells using Arabidopsis mutants disrupted in the CDPK genes. Disruption of the CPK6 gene impaired MeJA-induced stomatal closure, but disruption of the other CDPK genes did not. Despite the broad expression pattern of CPK6, we did not find other remarkable MeJA-insensitive phenotypes in the cpk6-1 mutant. The whole-cell patch-clamp analysis revealed that MeJA activation of nonselective Ca2+-permeable cation channels is impaired in the cpk6-1 mutant. Consistent with this result, MeJA-induced transient cytosolic free calcium concentration increments were reduced in the cpk6-1 mutant. MeJA failed to activate slow-type anion channels in the cpk6-1 guard cells. Production of early signal components, reactive oxygen species and nitric oxide, in guard cells was elicited by MeJA in the cpk6-1 mutant as in the wild type. These results provide genetic evidence that CPK6 has a different role from CPK3 and functions as a positive regulator of MeJA signaling in Arabidopsis guard cells.


Plant Physiology | 2011

Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis

Mohammad Anowar Hossain; Shintaro Munemasa; Misugi Uraji; Yoshimasa Nakamura; Izumi C. Mori; Yoshiyuki Murata

In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2. We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca2+]cyt) in guard cells using a Ca2+-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca2+]cyt elevation but not ABA-induced [Ca2+]cyt elevation. The aba2-2 mutation did not affect ABA-elicited [Ca2+]cyt elevation but suppressed MeJA-induced [Ca2+]cyt elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μm, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.


Annual Review of Plant Biology | 2015

Diverse Stomatal Signaling and the Signal Integration Mechanism

Yoshiyuki Murata; Izumi C. Mori; Shintaro Munemasa

Guard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.


Plant Physiology | 2012

Cooperative Function of PLDδ and PLDα1 in Abscisic Acid-Induced Stomatal Closure in Arabidopsis

Misugi Uraji; Takeshi Katagiri; Eiji Okuma; Wenxiu Ye; Mohammad Anowar Hossain; Choji Masuda; Aya Miura; Yoshimasa Nakamura; Izumi C. Mori; Kazuo Shinozaki; Yoshiyuki Murata

Phospholipase D (PLD) is involved in responses to abiotic stress and abscisic acid (ABA) signaling. To investigate the roles of two Arabidopsis (Arabidopsis thaliana) PLDs, PLDα1 and PLDδ, in ABA signaling in guard cells, we analyzed ABA responses in guard cells using Arabidopsis wild type, pldα1 and pldδ single mutants, and a pldα1 pldδ double mutant. ABA-induced stomatal closure was suppressed in the pldα1 pldδ double mutant but not in the pld single mutants. The pldα1 and pldδ mutations reduced ABA-induced phosphatidic acid production in epidermal tissues. Expression of either PLDα1 or PLDδ complemented the double mutant stomatal phenotype. ABA-induced stomatal closure in both pldα1 and pldδ single mutants was inhibited by a PLD inhibitor (1-butanol ), suggesting that both PLDα1 and PLDδ function in ABA-induced stomatal closure. During ABA-induced stomatal closure, wild-type guard cells accumulate reactive oxygen species and nitric oxide and undergo cytosolic alkalization, but these changes are reduced in guard cells of the pldα1 pldδ double mutant. Inward-rectifying K+ channel currents of guard cells were inhibited by ABA in the wild type but not in the pldα1 pldδ double mutant. ABA inhibited stomatal opening in the wild type and the pldδ mutant but not in the pldα1 mutant. In wild-type rosette leaves, ABA significantly increased PLDδ transcript levels but did not change PLDα1 transcript levels. Furthermore, the pldα1 and pldδ mutations mitigated ABA inhibition of seed germination. These results suggest that PLDα1 and PLDδ cooperate in ABA signaling in guard cells but that their functions do not completely overlap.


Plant and Cell Physiology | 2008

Roles of RCN1, Regulatory A Subunit of Protein Phosphatase 2A, in Methyl Jasmonate Signaling and Signal Crosstalk between Methyl Jasmonate and Abscisic Acid

Naoki Saito; Shintaro Munemasa; Yoshimasa Nakamura; Yasuaki Shimoishi; Izumi C. Mori; Yoshiyuki Murata

Methyl jasmonate (MeJA) as well as abscisic acid (ABA) induces stomatal closure with their signal crosstalk. We investigated the function of a regulatory A subunit of protein phosphatase 2A, RCN1, in MeJA signaling. Both MeJA and ABA failed to induce stomatal closure in Arabidopsis rcn1 knockout mutants unlike in wild-type plants. Neither MeJA nor ABA induced reactive oxygen species (ROS) production and suppressed inward-rectifying potassium channel activities in rcn1 mutants but not in wild-type plants. These results suggest that RCN1 functions upstream of ROS production and downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.

Collaboration


Dive into the Izumi C. Mori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge